Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations
Walkington, Noel J.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011), p. 523-540 / Harvested from Numdam

Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.

Publié le : 2011-01-01
DOI : https://doi.org/10.1051/m2an/2010065
Classification:  76A15,  65M12,  65M60,  76M10
@article{M2AN_2011__45_3_523_0,
     author = {Walkington, Noel J.},
     title = {Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {45},
     year = {2011},
     pages = {523-540},
     doi = {10.1051/m2an/2010065},
     mrnumber = {2804649},
     zbl = {1267.76008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2011__45_3_523_0}
}
Walkington, Noel J. Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 523-540. doi : 10.1051/m2an/2010065. http://gdmltest.u-ga.fr/item/M2AN_2011__45_3_523_0/

[1] L. Baňas, A. Prohl and R. Schätzle, Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math. 115 (2010) 395-432. | MR 2640052 | Zbl 1203.65174

[2] J.W. Barrett, X. Feng and A. Prohl, Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 40 (2006) 175-199. | Numdam | MR 2223509 | Zbl 1097.35082

[3] R. Becker, X. Feng and A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 1704-1731. | MR 2399392 | Zbl 1187.82130

[4] F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vorticies. Kluwer (1995). | MR 1269538 | Zbl 0802.35142

[5] R. Cohen, R. Hardt, D. Kinderlehrer, S. Lin and M. Luskin, Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR 900831 | Zbl 0713.76006

[6] Q. Du, B. Guo and J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39 (2001) 735-762. | MR 1860443 | Zbl 1007.76057

[7] F. Duzaar, J. Kristensen and G. Mingione, The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602 (2007) 17-58. | MR 2300451 | Zbl 1214.35021

[8] J. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR 158610

[9] J. Ericksen, Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10 (1962) 189-196. | MR 169513 | Zbl 0109.23002

[10] J. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987) 381-392.

[11] F.C. Frank, On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19-28.

[12] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994). | MR 1284205 | Zbl 0949.35004

[13] V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009). | Zbl 1228.35176

[14] V. Girault, R.H. Nochetto and R. Scott, Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279-330. | MR 2121575 | Zbl 1210.76051

[15] R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR 900833 | Zbl 0713.76006

[16] R. Hardt and F.H. Lin, Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | MR 978080 | Zbl 0673.58016

[17] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | MR 852090 | Zbl 0611.35077

[18] Q. Hu, X.-C. Tai and R. Winther, A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47 (2009) 1500-1523. | MR 2497338 | Zbl 1219.49030

[19] R. Jerard and M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | MR 1629646 | Zbl 0923.35167

[20] F. Leslie, Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265-283. | MR 1553506 | Zbl 0159.57101

[21] F. Leslie, Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1-81.

[22] F.H. Lin, Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995).

[23] F.H. Lin, Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 599-622. | Numdam | MR 1353261 | Zbl 0845.35052

[24] F.H. Lin, Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | MR 1376654 | Zbl 0853.35058

[25] F.H. Lin and C. Liu, Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | MR 1329830 | Zbl 0842.35084

[26] F.H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135-156. | MR 1784963 | Zbl 0963.35158

[27] P. Lin, C. Liu and H. Zhang, An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227 (2007) 1411-1427. | MR 2442400 | Zbl 1133.65077

[28] C. Liu and N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | MR 1740379 | Zbl 1040.76036

[29] C. Liu and N.J. Walkington, Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205-222. | Numdam | MR 1906815 | Zbl 1032.76035

[30] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355-426. | MR 2291779 | Zbl 1164.49324

[31] C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl 0008.04203

[32] I.W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004).

[33] E.G. Virga, Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994). | MR 1369095 | Zbl 0814.49002

[34] N.J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680-4710. | MR 2595054 | Zbl 1252.65169