Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
@article{M2AN_2011__45_3_523_0, author = {Walkington, Noel J.}, title = {Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {523-540}, doi = {10.1051/m2an/2010065}, mrnumber = {2804649}, zbl = {1267.76008}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_3_523_0} }
Walkington, Noel J. Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 523-540. doi : 10.1051/m2an/2010065. http://gdmltest.u-ga.fr/item/M2AN_2011__45_3_523_0/
[1] Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math. 115 (2010) 395-432. | MR 2640052 | Zbl 1203.65174
, and ,[2] Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 40 (2006) 175-199. | Numdam | MR 2223509 | Zbl 1097.35082
, and ,[3] Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 1704-1731. | MR 2399392 | Zbl 1187.82130
, and ,[4] Ginzburg-Landau Vorticies. Kluwer (1995). | MR 1269538 | Zbl 0802.35142
, and ,[5] Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR 900831 | Zbl 0713.76006
, , , and ,[6] Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39 (2001) 735-762. | MR 1860443 | Zbl 1007.76057
, and ,[7] The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602 (2007) 17-58. | MR 2300451 | Zbl 1214.35021
, and ,[8] Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR 158610
,[9] Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10 (1962) 189-196. | MR 169513 | Zbl 0109.23002
,[10] Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987) 381-392.
,[11] On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19-28.
,[12] An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994). | MR 1284205 | Zbl 0949.35004
,[13] Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009). | Zbl 1228.35176
and ,[14] Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279-330. | MR 2121575 | Zbl 1210.76051
, and ,[15] Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR 900833 | Zbl 0713.76006
and ,[16] Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | MR 978080 | Zbl 0673.58016
and ,[17] Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | MR 852090 | Zbl 0611.35077
, and ,[18] A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47 (2009) 1500-1523. | MR 2497338 | Zbl 1219.49030
, and ,[19] Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | MR 1629646 | Zbl 0923.35167
and ,[20] Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265-283. | MR 1553506 | Zbl 0159.57101
,[21] Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1-81.
,[22] Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995).
,[23] Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 599-622. | Numdam | MR 1353261 | Zbl 0845.35052
,[24] Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | MR 1376654 | Zbl 0853.35058
,[25] Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | MR 1329830 | Zbl 0842.35084
and ,[26] Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135-156. | MR 1784963 | Zbl 0963.35158
and ,[27] An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227 (2007) 1411-1427. | MR 2442400 | Zbl 1133.65077
, and ,[28] Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | MR 1740379 | Zbl 1040.76036
and ,[29] Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205-222. | Numdam | MR 1906815 | Zbl 1032.76035
and ,[30] Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355-426. | MR 2291779 | Zbl 1164.49324
,[31] The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl 0008.04203
,[32] The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004).
,[33] Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994). | MR 1369095 | Zbl 0814.49002
,[34] Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680-4710. | MR 2595054 | Zbl 1252.65169
,