In this paper we construct a new H(div)-conforming projection-based p-interpolation operator that assumes only Hr(K) -1/2(div, K)-regularity (r > 0) on the reference element (either triangle or square) K. We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space -1/2(div, K), which is closely related to the energy spaces for boundary integral formulations of time-harmonic problems of electromagnetics in three dimensions.
@article{M2AN_2011__45_2_255_0, author = {Bespalov, Alexei and Heuer, Norbert}, title = {A new H(div)-conforming $p$-interpolation operator in two dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {255-275}, doi = {10.1051/m2an/2010039}, zbl = {1277.78031}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_2_255_0} }
Bespalov, Alexei; Heuer, Norbert. A new H(div)-conforming $p$-interpolation operator in two dimensions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 255-275. doi : 10.1051/m2an/2010039. http://gdmltest.u-ga.fr/item/M2AN_2011__45_2_255_0/
[1] The h - p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Numdam | MR 896241 | Zbl 0623.65113
and ,[2] Efficient preconditioning for the p-version finite element method in two dimensions. SIAM J. Numer. Anal. 28 (1991) 624-661. | MR 1098410 | Zbl 0754.65083
, , and ,[3] Optimal error estimation for H(curl)-conforming p-interpolation in two dimensions. SIAM J. Numer. Anal. 47 (2009) 3977-3989. | MR 2576528 | Zbl 1203.65229
and ,[4] Natural p-BEM for the electric field integral equation on screens. IMA J. Numer. Anal. (2010) DOI:10.1093/imanum/drn072. | MR 2670107 | Zbl 1231.78001
and ,[5] Thehp - BEMS with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: a priori error analysis. Appl. Numer. Math. 60 (2010) 705-718. | MR 2646471 | Zbl 1204.78030
and ,[6] Convergence of the natural hp-BEM for the electric field integral equation on polyhedral surfaces. arXiv:0907.5231 (2009). | MR 2684345 | Zbl 1223.65083
, and ,[7] Discrete compactness for the p and hp 2D edge finite elements. Math. Models Methods Appl. Sci. 13 (2003) 1673-1687. | MR 2024467 | Zbl 1056.65108
, and ,[8] Discrete compactness for the hp version of rectangular edge finite elements. SIAM J. Numer. Anal. 44 (2006) 979-1004. | MR 2231852 | Zbl 1122.65110
, , and ,[9] Discrete compactness for the p -version of discrete differential forms. arXiv:0909.5079 (2009). | MR 2764424 | Zbl 1230.78025
, , , and ,[10] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[11] Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1-18. | MR 2177953 | Zbl 1128.78010
,[12] The electric field integral equation on Lipschitz screens: definitions and numerical approximation. Numer. Math. 94 (2003) 229-267. | MR 1974555 | Zbl 1027.65188
and ,[13] On traces for functional spaces related to Maxwell's equations, Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31-48. | MR 1809492 | Zbl 0976.46023
and ,[14] Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459-485. | MR 2012928 | Zbl 1071.65160
, , and ,[15] Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221-276. | MR 1753704 | Zbl 0968.35113
and ,[16] On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265 (2010) 297-320. | MR 2609313 | Zbl 1197.35338
and ,[17] Polynomial extension operators for H1, H(curl) and H(div)-spaces on a cube. Math. Comp. 77 (2008) 1967-1999. | MR 2429871 | Zbl 1198.65235
, and ,[18] Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi, F. Brezzi, L. Demkowicz, R. Duran, R. Falk and M. Fortin Eds., Lect. Notes in Mathematics 1939, Springer-Verlag, Berlin (2008) 101-158. | Zbl 1143.78366
,[19] L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 1195-1208. | MR 2034876 | Zbl 1067.78016
[20] The approximation theory for the p-version of the finite element method. SIAM J. Numer. Anal. 21 (1984) 1180-1207. | MR 765514 | Zbl 0572.65074
,[21] Additive Schwarz method for the p-version of the boundary element method for the single layer potential operator on a plane screen. Numer. Math. 88 (2001) 485-511. | MR 1835468 | Zbl 1003.65137
,[22] Discrete compactness for the p-version of tetrahedral edge elements. Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008) arXiv:0901.0761.
,[23] Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). | MR 350177 | Zbl 0223.35039
and ,[24] About traces, extensions and co-normal derivative operators on Lipschitz domains, in Integral Methods in Science and Engineering: Techniques and Applications, C. Constanda and S. Potapenko Eds., Birkhäuser, Boston (2008) 149-160. | MR 2389522 | Zbl 1217.35053
,[25] Mixed and hybrid methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., Amsterdam, North-Holland (1991) 523-639. | MR 1115239 | Zbl 0875.65090
and ,