The penalty method when applied to the Stokes problem provides a very efficient algorithm for solving any discretization of this problem since it gives rise to a system of two equations where the unknowns are uncoupled. For a spectral or spectral element discretization of the Stokes problem, we prove a posteriori estimates that allow us to optimize the penalty parameter as a function of the discretization parameter. Numerical experiments confirm the interest of this technique.
@article{M2AN_2011__45_2_201_0, author = {Bernardi, Christine and Blouza, Adel and Chorfi, Nejmeddine and Kharrat, Nizar}, title = {A penalty algorithm for the spectral element discretization of the Stokes problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {201-216}, doi = {10.1051/m2an/2010038}, mrnumber = {2804636}, zbl = {1267.76023}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_2_201_0} }
Bernardi, Christine; Blouza, Adel; Chorfi, Nejmeddine; Kharrat, Nizar. A penalty algorithm for the spectral element discretization of the Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 201-216. doi : 10.1051/m2an/2010038. http://gdmltest.u-ga.fr/item/M2AN_2011__45_2_201_0/
[1] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257-281. | MR 1754721 | Zbl 0955.65088
, , and ,[2] Régularisation duale des problèmes variationnels mixtes : application aux éléments finis mixtes et extension à quelques problèmes non linéaires. Thèse de Doctorat d'État, Université de Rouen, France (1976).
,[3] Perturbation of mixed variational problems. Application to mixed finite element methods. RAIRO Anal. Numér. 12 (1978) 211-236. | Numdam | MR 509973 | Zbl 0428.65059
,[4] Indicateurs d'erreur en h - N version des éléments spectraux. RAIRO Modél. Math. Anal. Numér. 30 (1996) 1-38. | Numdam | MR 1378610 | Zbl 0843.65077
,[5] Polynomial approximation of some singular functions. Appl. Anal. 42 (1991) 1-32. | MR 1112643 | Zbl 0701.41009
and ,[6] Spectral Methods, in Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485. | MR 1470226 | Zbl 0689.65001
and ,[7] Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Mod. Meth. Appl. Sci. 9 (1999) 395-414. | MR 1686546 | Zbl 0944.76058
and ,[8] Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, P.-L. George Ed., Hermès (2001) 251-278.
, and ,[9] A posteriori analysis of a penalty method and application to the Stokes problem. Math. Mod. Meth. Appl. Sci. 13 (2003) 1599-1628. | MR 2024465 | Zbl 1050.65099
, and ,[10] Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer-Verlag (2004). | MR 2068204 | Zbl 1063.65119
, and ,[11] Penalty approximation of Stokes flow. Comput. Meth. Appl. Mech. Eng. 35 (1982) 169-206. | MR 682127 | Zbl 0478.76040
and ,[12] Penalty finite element method for the Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 42 (1984) 183-224. | MR 737950 | Zbl 0518.76023
and ,[13] Convergence of iterative methods in penalty finite element approximation of the Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 60 (1987) 1-29. | MR 872571 | Zbl 0593.76037
and ,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms . Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077
and ,[15] Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Comput. 14 (1993) 310-337. | MR 1204233 | Zbl 0769.76047
, , and ,[16] Incompressible finite elements which fail the discrete LBB condition, in Penalty-Finite Element Methods in Mechanics, Phoenix, Am. Soc. Mech. Eng., New York (1982) 33-50. | MR 686616 | Zbl 0503.76049
and ,