In this paper, we continue the study of the Raman amplification in plasmas that we initiated in [Colin and Colin, Diff. Int. Eqs. 17 (2004) 297-330; Colin and Colin, J. Comput. Appl. Math. 193 (2006) 535-562]. We point out that the Raman instability gives rise to three components. The first one is collinear to the incident laser pulse and counter propagates. In 2-D, the two other ones make a non-zero angle with the initial pulse and propagate forward. Furthermore they are symmetric with respect to the direction of propagation of the incident pulse. We construct a non-linear system taking into account all these components and perform some 2-D numerical simulations.
@article{M2AN_2011__45_1_1_0, author = {Colin, Mathieu and Colin, Thierry}, title = {A multi-D model for Raman amplification}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {45}, year = {2011}, pages = {1-22}, doi = {10.1051/m2an/2010037}, mrnumber = {2781129}, zbl = {06183193}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2011__45_1_1_0} }
Colin, Mathieu; Colin, Thierry. A multi-D model for Raman amplification. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 45 (2011) pp. 1-22. doi : 10.1051/m2an/2010037. http://gdmltest.u-ga.fr/item/M2AN_2011__45_1_1_0/
[1] A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses. SIAM J. Math. Anal. 34 (2002) 636-674. | MR 1970887 | Zbl 1032.78015
and ,[2] Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: M2AN 40 (2006) 961-990. | Numdam | MR 2297101 | Zbl 1112.76090
, , and ,[3] On the dominant and subdominant behaviour of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasma 5 (1998) 4337-4356.
, , and ,[4] Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris. Sér. I Math. 326 (1998) 1427-1432. | MR 1649187 | Zbl 0911.65072
,[5] Geometrics optics and instability for semi-linear Schrödinger equations. Arch. Ration. Mech. Anal. 183 (2007) 525-553. | MR 2278414 | Zbl 1134.35098
,[6] On a quasi-linear Zakharov system describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297-330. | MR 2037980 | Zbl 1174.35528
and ,[7] A numerical model for the Raman amplification for laser-plasma interactions. J. Comput. Appl. Math. 193 (2006) 535-562. | MR 2229560 | Zbl 1092.35101
and ,[8] Spatial temporal theory of Raman forward scattering. Phys. Plasma 3 (1996) 1360-1372.
, , and ,[9] Simulation of laser beam propagation with a paraxial model in a tilted frame. J. Comput. Phys. 228 (2009) 861-880. | MR 2477792 | Zbl 1156.78321
, , and ,[10] Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. Comput. 58 (1992) 83-102. | MR 1106968 | Zbl 0746.65066
,[11] Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 5 (1999) 685-695. | MR 1696338 | Zbl 0951.35122
, and ,[12] The physics of laser plama interactions. Addison-Wesley, New York (1988)
,[13] Mathematical models for laser-plasma interaction. ESAIM: M2AN 39 (2005) 275-318. | Numdam | MR 2143950 | Zbl 1080.35157
,[14] Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184 (2007) 121-183. | MR 2289864 | Zbl pre05146096
,[15] Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285-366. | MR 824169
, and ,