The paper is devoted to the computation of two-phase flows in a porous medium when applying the two-fluid approach. The basic formulation is presented first, together with the main properties of the model. A few basic analytic solutions are then provided, some of them corresponding to solutions of the one-dimensional Riemann problem. Three distinct Finite-Volume schemes are then introduced. The first two schemes, which rely on the Rusanov scheme, are shown to give wrong approximations in some cases involving sharp porous profiles. The third one, which is an extension of a scheme proposed by Kröner and Thanh [SIAM J. Numer. Anal. 43 (2006) 796-824] for the computation of single phase flows in varying cross section ducts, provides fair results in all situations. Properties of schemes and numerical results are presented. Analytic tests enable to compute the L1 norm of the error.
@article{M2AN_2010__44_6_1319_0, author = {Girault, La\"etitia and H\'erard, Jean-Marc}, title = {A two-fluid hyperbolic model in a porous medium}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {1319-1348}, doi = {10.1051/m2an/2010033}, mrnumber = {2769060}, zbl = {pre05835024}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_6_1319_0} }
Girault, Laëtitia; Hérard, Jean-Marc. A two-fluid hyperbolic model in a porous medium. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 1319-1348. doi : 10.1051/m2an/2010033. http://gdmltest.u-ga.fr/item/M2AN_2010__44_6_1319_0/
[1] Working group on the interfacial coupling of models. http://www.ann.jussieu.fr/groupes/cea (2003).
, , , , , and ,[2] The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 195 (2004) 434-464. | Zbl 1115.76414
and ,[3] A fast and stable well-balanced scheme with hydrodynamic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. | Zbl 1133.65308
, , , and ,[4] A two-phase mixture theory for the deflagration to detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861-889. | Zbl 0609.76114
and ,[5] Nonlinear stability of Finite Volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhauser (2004). | Zbl 1086.65091
,[6] Dafermos Regularization for Interface Coupling of Conservation Laws, in Hyperbolic problems: Theory, Numerics, Applications, Springer (2008) 567-575. | Zbl 1144.35437
, and ,[7] A sequel to a rough Godunov scheme. Application to real gases. Comput. Fluids 29 (2000) 813-847. | Zbl 0961.76048
, and ,[8] A well-balanced numerical scheme for shallow-water equations with topography: the resonance phenomena. Int. J. Finite Volumes 1 (2004) available at http://www.latp.univ-mrs.fr/IJFV/.
, and ,[9] Closure laws for a two-fluid two-pressure model. C. R. Acad. Sci. Paris. I-332 (2002) 927-932. | Zbl 0999.35057
, , and ,[10] Finite Volume methods, in Handbook of Numerical Analysis VII, P.G. Ciarlet and J.L. Lions Eds., North Holland (2000) 715-1022. | Zbl 0981.65095
, and ,[11] A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2002) 1133-1159. | Numdam | Zbl 1137.65419
, and ,[12] Some recent Finite Volume schemes to compute Euler equations using real gas EOS. Int. J. Num. Meth. Fluids 39 (2002) 1073-1138. | Zbl 1053.76044
, and ,[13] Some approximate Godunov schemes to compute shallow water equations with topography. Comput. Fluids 32 (2003) 479-513. | Zbl 1084.76540
, and ,[14] Numerical modelling of two phase flows using the two-fluid two-pressure approach. Math. Mod. Meth. Appl. Sci. 14 (2004) 663-700. | Zbl 1177.76428
, and ,[15] Multidimensional computations of a two-fluid hyperbolic model in a porous medium. AIAA paper 2009-3540 (2009) available at http://www.aiaa.org.
and ,[16] The Riemann problem for a class of resonant hyperbolic systems of balance laws. Ann. Inst. Henri Poincaré, Anal. non linéaire 21 (2004) 881-902. | Numdam | Zbl 1086.35069
and ,[17] Coupling fluid models. Exploring some features of interfacial coupling, in Proceedings of Finite Volumes for Complex Applications V, Aussois, France, June 8-13 (2008).
,[18] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: 1. The scalar case. Numer. Math. 97 (2004) 81-130. | Zbl 1063.65080
and ,[19] The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems. ESAIM: M2AN 39 (2005) 649-692. | Numdam | Zbl 1095.65084
, and ,[20] Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb. 47 (1959) 271-300.
,[21] A well balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | Zbl 0876.65064
and ,[22] Modélisation et simulation numérique des écoulements diphasiques par une approche bifluide à deux pressions. Ph.D. Thesis, Université Aix Marseille I, Marseille, France (2007).
,[23] A well-balanced approximate Riemann solver for variable cross-section compressible flows. AIAA paper 2009-3888 (2009) available at http://www.aiaa.org.
, and ,[24] A rough scheme to couple free and porous media. Int. J. Finite Volumes 3 (2006) available at http://www.latp.univ-mrs.fr/IJFV/.
,[25] A three-phase flow model. Math. Comp. Model. 45 (2007) 432-455. | Zbl 1165.76382
,[26] Un modèle hyperbolique diphasique bi-fluide en milieu poreux. C. r., Méc. 336 (2008) 650-655. | Zbl 1143.76576
,[27] Two-phase modeling of a DDT: structure of the velocity relaxation zone. Phys. Fluids 9 (1997) 3885-3897.
, , , and ,[28] Numerical solution to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43 (2006) 796-824. | Zbl 1093.35050
and ,[29] The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. ESAIM: M2AN 42 (2008) 425-442. | Numdam | Zbl 1139.76048
, and ,[30] Two-phase shock-tube problems and numerical methods of solution. J. Comput. Phys. 204 (2005) 598-632. | Zbl 1203.76117
,[31] The Riemann problem and a high resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212 (2006) 490-526. | Zbl 1161.76531
, and ,