Stochastic lagrangian method for downscaling problems in computational fluid dynamics
Bernardin, Frédéric ; Bossy, Mireille ; Chauvin, Claire ; Jabir, Jean-François ; Rousseau, Antoine
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010), p. 885-920 / Harvested from Numdam

This work aims at introducing modelling, theoretical and numerical studies related to a new downscaling technique applied to computational fluid dynamics. Our method consists in building a local model, forced by large scale information computed thanks to a classical numerical weather predictor. The local model, compatible with the Navier-Stokes equations, is used for the small scale computation (downscaling) of the considered fluid. It is inspired by Pope's works on turbulence, and consists in a so-called Langevin system of stochastic differential equations. We introduce this model and exhibit its links with classical RANS models. Well-posedness, as well as mean-field interacting particle approximations and boundary condition issues are addressed. We present the numerical discretization of the stochastic downscaling method and investigate the accuracy of the proposed algorithm on simplified situations.

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/m2an/2010046
Classification:  65C20,  65C35,  68U20,  35Q30
@article{M2AN_2010__44_5_885_0,
     author = {Bernardin, Fr\'ed\'eric and Bossy, Mireille and Chauvin, Claire and Jabir, Jean-Fran\c cois and Rousseau, Antoine},
     title = {Stochastic lagrangian method for downscaling problems in computational fluid dynamics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {44},
     year = {2010},
     pages = {885-920},
     doi = {10.1051/m2an/2010046},
     mrnumber = {2731397},
     zbl = {pre05798937},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2010__44_5_885_0}
}
Bernardin, Frédéric; Bossy, Mireille; Chauvin, Claire; Jabir, Jean-François; Rousseau, Antoine. Stochastic lagrangian method for downscaling problems in computational fluid dynamics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 885-920. doi : 10.1051/m2an/2010046. http://gdmltest.u-ga.fr/item/M2AN_2010__44_5_885_0/

[1] F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau and T. Salameh, Stochastic downscaling methods: application to wind refinement. Stoch. Environ. Res. Risk. Assess. 23 (2009) 851-859.

[2] M. Bossy, J.-F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Research report RR-6761, INRIA, France (2008) http://hal.inria.fr/inria-00345524/en/.

[3] M. Bossy, J. Fontbona and J.-F. Jabir, Incompressible Lagrangian stochastic model in the torus. In preparation.

[4] J.A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system. Math. Meth. Appl. Sci. 21 (1998) 907-938. | Zbl 0910.35101

[5] C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67. Springer-Verlag, New York (1988). | Zbl 0646.76001

[6] C. Chauvin, S. Hirstoaga, P. Kabelikova, F. Bernardin and A. Rousseau, Solving the uniform density constraint in a downscaling stochastic model. ESAIM: Proc. 24 (2008) 97-110. | Zbl 1156.86300

[7] C. Chauvin, F. Bernardin, M. Bossy and A. Rousseau, Wind simulation refinement: some new challenges for particle methods, in Springer Mathematics in Industry series, ECMI (to appear).

[8] P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup. 19 (1986) 519-542. | Numdam | Zbl 0619.35087

[9] P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Internal report, École Polytechnique, Palaiseau, France (1985). | Zbl 0649.76065

[10] M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type. AMRX Appl. Math. Res. Express 3 (2005) 77-116. | Zbl 1085.35086

[11] M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Diff. Equ. 11 (2006) 1261-1320. | Zbl 1153.35312

[12] P. Drobinski, J.L. Redelsperger and C. Pietras, Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys. Res. Lett. 33 (2006) L23806.

[13] C.W. Gardiner, Handbook of stochastic methods, Springer Series in Synergetics 13. Second edition, Springer-Verlag (1985). | Zbl 1181.60001

[14] J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection FEM. J. Comput. Phys. 132 (1997) 12-33. | Zbl 0879.76050

[15] F.H. Harlow and P.I. Nakayama, Transport of turbulence energy decay rate. Technical report (1968) 451.

[16] J.-F. Jabir, Lagrangian Stochastic Models of conditional McKean-Vlasov type and their confinements. Ph.D. Thesis, University of Nice-Sophia-Antipolis, France (2008).

[17] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). | Zbl 0734.60060

[18] A. Lachal, Les temps de passage successifs de l'intégrale du mouvement brownien. Ann. I.H.P. Probab. Stat. 33 (1997) 1-36. | Numdam | Zbl 0877.60054

[19] E. Lanconelli, A. Pascucci and S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in Nonlinear problems in mathematical physics and related topics, Int. Math. Ser., Kluwer/Plenum, New York (2002) 243-265. | Zbl 1032.35114

[20] H.P. Mckean, Jr, A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227-235. | Zbl 0119.34701

[21] J.-P. Minier and E. Peirano, The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352 (2001) 1-214. | Zbl 0971.76039

[22] B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. Masson, Paris (1994).

[23] C.M. Mora, Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25 (2005) 486-506. | Zbl 1080.65005

[24] T. Plewa, T. Linde and V.G. Weirs Eds., Adaptive Mesh Refinement - Theory and Applications, Lecture Notes in Computational Science and Engineering 41. Springer, Chicago (2003). | Zbl 1053.65002

[25] S.B. Pope, P.D.F. methods for turbulent reactive flows. Prog. Energy Comb. Sci. 11 (1985) 119-192.

[26] S.B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (1993) 973-985. | Zbl 0827.76036

[27] S.B. Pope, Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26 (1994) 23-63. | Zbl 0802.76033

[28] S.B. Pope, Turbulent flows. Cambridge Univ. Press, Cambridge (2003). | Zbl 0966.76002

[29] P.-A. Raviart, An analysis of particle methods, in Numerical methods in fluid dynamics, Lecture Notes in Mathematics 1127, Springer, Berlin (1985) 243-324. | Zbl 0598.76003

[30] J.L. Redelsperger, F. Mahé and P. Carlotti, A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound. Layer Meteor. 101 (2001) 375-408.

[31] A. Rousseau, F. Bernardin, M. Bossy, P. Drobinski and T. Salameh, Stochastic particle method applied to local wind simulation, in Proc. IEEE International Conference on Clean Electrical Power (2007) 526-528.

[32] P. Sagaut, Large eddy simulation for incompressible flows - An introduction. Scientific Computation, Springer-Verlag, Berlin (2001). | Zbl 1020.76001

[33] D.W. Stroock and S.R. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin (1979). | Zbl 1103.60005

[34] R.B. Stull, An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Kluwer Academic Publishers (1988). | Zbl 0752.76001

[35] A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX - 1989, Lecture Notes in Mathematics 1464, Springer, Berlin (1991) 165-251. | Zbl 0732.60114