Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition
Durán, Mario ; Godoy, Eduardo ; Nédélec, Jean-Claude
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010), p. 671-692 / Harvested from Numdam

This work presents an effective and accurate method for determining, from a theoretical and computational point of view, the time-harmonic Green's function of an isotropic elastic half-plane where an impedance boundary condition is considered. This method, based on the previous work done by Durán et al. (cf. [Numer. Math. 107 (2007) 295-314; IMA J. Appl. Math. 71 (2006) 853-876]) for the Helmholtz equation in a half-plane, combines appropriately analytical and numerical techniques, which has an important advantage because the obtention of explicit expressions for the surface waves. We show, in addition to the usual Rayleigh wave, another surface wave appearing in some special cases. Numerical results are given to illustrate that. This is an extended and detailed version of the previous article by Durán et al. [C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725-731].

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/m2an/2010020
Classification:  31A10,  35E05,  65T50,  74B05,  74J15
@article{M2AN_2010__44_4_671_0,
     author = {Dur\'an, Mario and Godoy, Eduardo and N\'ed\'elec, Jean-Claude},
     title = {Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {44},
     year = {2010},
     pages = {671-692},
     doi = {10.1051/m2an/2010020},
     mrnumber = {2683578},
     zbl = {1194.31002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2010__44_4_671_0}
}
Durán, Mario; Godoy, Eduardo; Nédélec, Jean-Claude. Theoretical aspects and numerical computation of the time-harmonic Green's function for an isotropic elastic half-plane with an impedance boundary condition. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 671-692. doi : 10.1051/m2an/2010020. http://gdmltest.u-ga.fr/item/M2AN_2010__44_4_671_0/

[1] H. Bateman, Tables of Integral Transformations, Volume I. McGraw-Hill Book Company, Inc. (1954).

[2] W.W. Bell, Special Functions for Scientists and Engineers. Dover Publications, Inc., New York, USA (1968). | Zbl 1099.33001

[3] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. John Wiley & Sons Ltd., Chichester, UK (1995). | Zbl 0920.73001

[4] Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources - Part I: A 2D model. Int. J. Numer. Meth. Engrg. 69 (2007) 347-366. | Zbl 1194.74110

[5] Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources - Part II: A 3D model. Int. J. Numer. Meth. Engrg. 69 (2007) 367-389. | Zbl 1194.74111

[6] P. Colton and R. Kress, Integral Equations Methods in Scattering Theory. John Wiley, New York, USA (1983). | Zbl 0522.35001

[7] J. Dompierre, Équations Intégrales en Axisymétrie Généralisée, Application à la Sismique Entre Puits. Ph.D. Thesis, École Centrale de Paris, France (1993).

[8] M. Durán, E. Godoy and J.-C. Nédélec, Computing Green's function of elasticity in a half-plane with impedance boundary condition. C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725-731.

[9] M. Durán, I. Muga and J.-C. Nédélec, The Helmholtz equation in a locally perturbed half-plane with passive boundary. IMA J. Appl. Math. 71 (2006) 853-876. | Zbl 1152.35338

[10] M. Durán, R. Hein and J.-C. Nédélec, Computing numerically the Green's function of the half-plane Helmholtz operator with impedance boundary conditions. Numer. Math. 107 (2007) 295-314. | Zbl 1124.65113

[11] G.R. Franssens, Calculation of the elasto-dynamics Green's function in layered media by means of a modified propagator matrix method. Geophys. J. Roy. Astro. Soc. 75 (1983) 669-691. | Zbl 0527.73018

[12] F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics. Springer-Verlag, New York, USA (1994). | Zbl 0858.76002

[13] L.R. Johnson, Green function's for Lamb's Problem. Geophys. J. Roy. Astro. Soc. 37 (1974) 99-131. | Zbl 0298.73029

[14] A.M. Linkov, Boundary Integral Equations in Elasticity Theory. Kluwer Academic Publishers, Dordrecht, Boston (2002). | Zbl 1046.74001

[15] A.M. Linkov, A theory of rupture pulse on softening interface with application to the Chi-Chi earthquake. J. Geophys. Res. 111 (2006) 1-14.

[16] J.-C. Nédélec, Acoustic and Electromagnetic Equations - Integral Representations for Harmonic Problems, Applied Mathematical Sciences 144. Springer, Germany (2001). | Zbl 0981.35002

[17] C. Richter and G. Schmid, A Green's function time-domain boundary element method for the elastodynamic half-plane. Int. J. Numer. Meth. Engrg. 46 (1999) 627-648. | Zbl 0978.74080

[18] M. Spies, Green's tensor function for Lamb's problem: The general anisotropic case. J. Acoust. Soc. Am. 102 (1997) 2438-2441.

[19] T.R. Stacey and C.H. Page, Practical Handbook for Underground Rock Mechanics, Series on Rock and Soil Mechanics 12. Trans Tech Publications, Germany (1986).

[20] C.-Y. Wang and J.D. Achenbach, Lamb's problem for solids of general anisotropy. Wave Mot. 24 (1996) 227-242. | Zbl 0954.74523