Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields
Ciarlet Jr., Patrick ; Scheid, Claire
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010), p. 647-670 / Harvested from Numdam

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable for the full 3D case.

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/m2an/2010014
Classification:  65N12,  65N30,  49Q10
@article{M2AN_2010__44_4_647_0,
     author = {Ciarlet Jr., Patrick and Scheid, Claire},
     title = {Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {44},
     year = {2010},
     pages = {647-670},
     doi = {10.1051/m2an/2010014},
     mrnumber = {2683577},
     zbl = {1193.78029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2010__44_4_647_0}
}
Ciarlet Jr., Patrick; Scheid, Claire. Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 647-670. doi : 10.1051/m2an/2010014. http://gdmltest.u-ga.fr/item/M2AN_2010__44_4_647_0/

[1] P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design 1 (1984) 169-181. | Zbl 0566.65003

[2] B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II 317 (1993) 157.

[3] S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French].

[4] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics 15. Springer-Verlag (1991). | Zbl 0788.73002

[5] D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005). | Zbl 1117.49001

[6] J. Buehrle, S. Herminghaus and F. Mugele, Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett. 91 (2003) 086101.

[7] Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542-1570. | Zbl 0964.78017

[8] P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559-586. | Zbl 1063.78018

[9] P. Ciarlet, Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I 336 (2003) 353-358. | Zbl 1028.65118

[10] P. Ciarlet, Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358-365. | Zbl 1194.78053

[11] P. Ciarlet, Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN 44 (2010) 75-108. | Numdam | Zbl 1192.78039

[12] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17-351. | Zbl 0875.65086

[13] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93 (2002) 239-277. | Zbl 1019.78009

[14] M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations - Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002). | Zbl 1057.78011

[15] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci. 7 (1997) 957-991. | Zbl 0910.35123

[16] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986). | Zbl 0413.65081

[17] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications 48. Springer-Verlag (2005) [in French]. | Zbl 1098.49001

[18] S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French].

[19] P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003).

[20] F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter 17 (2005) R705-R774.

[21] F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976).

[22] J.-C. Nédélec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069

[23] S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993). | Zbl 0794.35040

[24] S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395-450. | Zbl 0824.35014

[25] A. Papathanasiou and A. Boudouvis, A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett. 86 (2005) 164102.

[26] C. Quilliet and B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid In. 6 (2001) 34-39.

[27] F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French].

[28] C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French].

[29] C. Scheid and P. Witomski, A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model. 49 (2009) 647-665. | Zbl 1165.76384

[30] T. Sorokina and A.J. Worsey, A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29 (2008) 71-89. | Zbl 1154.65009

[31] M. Vallet, M. Vallade and B. Berge, Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B. 11 (1999) 583.

[32] H. Verheijen and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15 (1999) 6616.

[33] A.J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design 5 (1988) 177-186. | Zbl 0654.65008