In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity, we introduce a non-standard test space in (Ω) and prove its density. Thorough assessment on a set of anisotropic heterogeneous problems as well as a comparison with classical multi-point Finite Volume methods is provided.
@article{M2AN_2010__44_4_597_0, author = {Ag\'elas, L\'eo and Di Pietro, Daniele A. and Droniou, J\'er\^ome}, title = {The G method for heterogeneous anisotropic diffusion on general meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {597-625}, doi = {10.1051/m2an/2010021}, mrnumber = {2683575}, zbl = {1202.65143}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_4_597_0} }
Agélas, Léo; Di Pietro, Daniele A.; Droniou, Jérôme. The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 597-625. doi : 10.1051/m2an/2010021. http://gdmltest.u-ga.fr/item/M2AN_2010__44_4_597_0/
[1] An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405-432. | Zbl 1094.76550
,[2] Discretization on non-orthogonal, curvilinear grids for multi-phase flow, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
, , and ,[3] A new finite volume approach to efficient discretization on challeging grids, in Proc. SPE 106435, Houston, USA (2005).
, , , and ,[4] Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11 (2007) 333-345. | Zbl 1128.65093
, , , and ,[5] A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24 (2008) 1329-1360. | Zbl 1230.65114 | Zbl pre05320771
, , and ,[6] A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic problems, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 705-716.
and ,[7] Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes. C. R. Acad. Sci. Paris, Sér. I 346 (2008) 1007-1012. | Zbl 1152.65107
and ,[8] Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes. Preprint available at http://hal.archives-ouvertes.fr/hal-00340159/fr (2008). | Zbl 1152.65107
and ,[9] A symmetric and coercive finite volume scheme for multiphase porous media flow with applications in the oil industry, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 35-52.
, and ,[10] An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1-29.
, , and ,[11] Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset and H.P. Langtangen Eds., Birkhäuser Press (1997) 163-202. | Zbl 0882.65154
, , and ,[12] PETSc Web page (2001) www.mcs.anl.gov/petsc.
, , , , , , and ,[13] PETSc users manual. Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004).
, , , , , , , and ,[14] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872-1896. | Zbl 1108.65102
, and ,[15] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meths. Appli. Sci. 15 (2005) 1533-1553. | Zbl 1083.65099
, and ,[16] Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meths. Appli. Sci. 26 (2006) 275-298. | Zbl 1094.65111
, and ,[17] Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. (2010), preprint available at http://hal.archives-ouvertes.fr/hal-00278925/fr/. | Zbl 05776268 | Zbl pre05776268
and ,[18] A density result in Sobolev spaces. J. Math. Pures Appl. 81 (2002) 697-714. | Zbl 1033.46029
,[19] A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35-71. | Zbl 1109.65099
and ,[20] A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Maths. Models Methods Appl. Sci. 20 (2010) 1-31. | Zbl 1191.65142
, , and ,[21] A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
and ,[22] The finite volume method, Ph.G. Charlet and J.-L. Lions Eds., North Holland (2000). | Zbl 0981.65095
, and ,[23] Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | Zbl 1173.76028
, and ,[24] Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. (2009) doi: 10.1093/imanum/drn084. | Zbl 1202.65144
, and ,[25] Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367-391. | Numdam | Zbl 1116.65121
,