In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity, we introduce a non-standard test space in (Ω) and prove its density. Thorough assessment on a set of anisotropic heterogeneous problems as well as a comparison with classical multi-point Finite Volume methods is provided.
@article{M2AN_2010__44_4_597_0,
author = {Ag\'elas, L\'eo and Di Pietro, Daniele A. and Droniou, J\'er\^ome},
title = {The G method for heterogeneous anisotropic diffusion on general meshes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {44},
year = {2010},
pages = {597-625},
doi = {10.1051/m2an/2010021},
mrnumber = {2683575},
zbl = {1202.65143},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2010__44_4_597_0}
}
Agélas, Léo; Di Pietro, Daniele A.; Droniou, Jérôme. The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 597-625. doi : 10.1051/m2an/2010021. http://gdmltest.u-ga.fr/item/M2AN_2010__44_4_597_0/
[1] , An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6 (2002) 405-432. | Zbl 1094.76550
[2] , , and , Discretization on non-orthogonal, curvilinear grids for multi-phase flow, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
[3] , , , and , A new finite volume approach to efficient discretization on challeging grids, in Proc. SPE 106435, Houston, USA (2005).
[4] , , , and , Convergence of a symmetric MPFA method on quadrilateral grids. Comput. Geosci. 11 (2007) 333-345. | Zbl 1128.65093
[5] , , and , A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Equ. 24 (2008) 1329-1360. | Zbl 1230.65114 | Zbl pre05320771
[6] and , A symmetric finite volume scheme for anisotropic heterogeneous second-order elliptic problems, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 705-716.
[7] and , Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes. C. R. Acad. Sci. Paris, Sér. I 346 (2008) 1007-1012. | Zbl 1152.65107
[8] and , Convergence of finite volume MPFA O type schemes for heterogeneous anisotropic diffusion problems on general meshes. Preprint available at http://hal.archives-ouvertes.fr/hal-00340159/fr (2008). | Zbl 1152.65107
[9] , and , A symmetric and coercive finite volume scheme for multiphase porous media flow with applications in the oil industry, in Finite Volumes for Complex Applications, V.R. Eymard and J.-M. Hérard Eds., John Wiley & Sons (2008) 35-52.
[10] , , and , An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1-29.
[11] , , and , Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, E. Arge, A.M. Bruaset and H.P. Langtangen Eds., Birkhäuser Press (1997) 163-202. | Zbl 0882.65154
[12] , , , , , , and , PETSc Web page (2001) www.mcs.anl.gov/petsc.
[13] , , , , , , , and , PETSc users manual. Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004).
[14] , and , Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872-1896. | Zbl 1108.65102
[15] , and , A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meths. Appli. Sci. 15 (2005) 1533-1553. | Zbl 1083.65099
[16] , and , Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meths. Appli. Sci. 26 (2006) 275-298. | Zbl 1094.65111
[17] and , Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. (2010), preprint available at http://hal.archives-ouvertes.fr/hal-00278925/fr/. | Zbl 05776268 | Zbl pre05776268
[18] , A density result in Sobolev spaces. J. Math. Pures Appl. 81 (2002) 697-714. | Zbl 1033.46029
[19] and , A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35-71. | Zbl 1109.65099
[20] , , and , A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods. Maths. Models Methods Appl. Sci. 20 (2010) 1-31. | Zbl 1191.65142
[21] and , A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery (Røros, Norway), Vol. D (1994).
[22] , and , The finite volume method, Ph.G. Charlet and J.-L. Lions Eds., North Holland (2000). | Zbl 0981.65095
[23] , and , Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1-36. | Zbl 1173.76028
[24] , and , Discretization of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. (2009) doi: 10.1093/imanum/drn084. | Zbl 1202.65144
[25] , Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: M2AN 40 (2006) 367-391. | Numdam | Zbl 1116.65121