We consider the spherically symmetric Vlasov-Einstein system in the case of asymptotically flat spacetimes. From the physical point of view this system of equations can model the formation of a spherical black hole by gravitational collapse or describe the evolution of galaxies and globular clusters. We present high-order numerical schemes based on semi-lagrangian techniques. The convergence of the solution of the discretized problem to the exact solution is proven and high-order error estimates are supplied. More precisely the metric coefficients converge in L∞ and the statistical distribution function of the matter and its moments converge in L2 with a rate of (Δt2 + hm/Δt), when the exact solution belongs to Hm.
@article{M2AN_2010__44_3_573_0, author = {Bechouche, Philippe and Besse, Nicolas}, title = {Analysis of a semi-lagrangian method for the spherically symmetric Vlasov-Einstein system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {573-595}, doi = {10.1051/m2an/2010012}, mrnumber = {2666655}, zbl = {1188.83010}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_3_573_0} }
Bechouche, Philippe; Besse, Nicolas. Analysis of a semi-lagrangian method for the spherically symmetric Vlasov-Einstein system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 573-595. doi : 10.1051/m2an/2010012. http://gdmltest.u-ga.fr/item/M2AN_2010__44_3_573_0/
[1] Difference equations and inequalities, Monographs and Textbooks in pure and applied mathematics. Marcel Dekker, New York, USA (1992). | Zbl 0925.39001
,[2] A numerical investigation of stability states and critical phenomena for the spherically symmetric Einstein-Vlasov system. Class. Quant. Grav. 23 (2006) 3659-3677. | Zbl 1096.83035
and ,[3] Regular compactly supported wavelets in Sobolev spaces. Duke Math. J. 87 (1996) 481-508. | Zbl 0883.42026
and ,[4] Two dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys. 62 (1999) 367-388.
, , , and ,[5] Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42 (2004) 350-382. | Zbl 1071.82037
,[6] Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the Vlasov-Poisson system. SIAM J. Numer. Anal. 46 (2008) 639-670. | Zbl 1168.82025
,[7] Gyro-water-bag approch in nonlinear gyrokinetic turbulence. J. Comput. Phys. 228 (2009) 3973-3995. | Zbl pre05566332
and ,[8] Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comp. 77 (2008) 93-123. | Zbl 1131.65080
and ,[9] Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191 (2003) 341-376. | Zbl 1030.82011
and ,[10] A Wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys. 227 (2008) 7889-7916. | Zbl 1194.83013
, , , and ,[11] Plasmas physics via computer simulation. McGraw-Hill, USA (1985).
and ,[12] The integration of the Vlasov equation in configuration space. J. Comput Phys. 22 (1976) 330-351.
and ,[13] Universality and scaling in gravitational collapse of a scalar field. Phys. Rev. Lett. 70 (1993) 9-12.
,[14] Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry. Phys. Rev. D 65 (2001) 024007.
and ,[15] Critical behaviour in gravitational collapse of a Yang-Mills field. Phys. Rev. Lett. 77 (1996) 424-427. | Zbl 0986.83030
, and ,[16] Problème de Cauchy pour le système intégro-différentiel d'Einstein-Liouville. Ann. Inst. Fourier 21 (1971) 181-201. | Numdam | Zbl 0208.14303
,[17] Numerical analysis of wavelet methods, Studies in mathematics and its applications 32. Elsevier, North-Holland (2003). | Zbl 1038.65151
,[18] Particle simulation of plasmas. Rev. Modern Phys. 55 (1983) 403-447.
,[19] On the convergence for particle methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 26 (1989) 249-288. | Zbl 0669.76146
and ,[20] Convergence of a particle method for the relativistic Vlasov-Maxwell system. SIAM J. Numer. Anal. 28 (1991) 1-25. | Zbl 0725.65124
and ,[21] Global existence of solutions of the spherically symmetric Vlasov-Einstein with small initial data. Commun. Math. Phys. 150 (1992) 561-583. [Erratum. Comm. Math. Phys. 176 (1996) 475-478.] | Zbl 0847.53062
and ,[22] Convergence of a Particle-In-Cell scheme for the spherically symmetric Vlasov-Einstein system. Ind. Un. Math. J. 52 (2003) 821-861. | Zbl 1080.83003
and ,[23] A regularity theorem for solutions of the spherical symmetric Vlasov-Einstein system. Commun. Math. Phys. 168 (1995) 467-478. | Zbl 0830.35141
, and ,[24] Critical collapse of collisionless matter-a numerical investigation. Phys. Rev. D 58 (1998) 044007.
, and ,[25] Numerical treatment of the symmetric Vlasov-Poisson and Vlasov-Einstein system by particle methods. Ph.D. Thesis, Mathematisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany (1999). | Zbl 0972.35168
,[26] Discrete approximation of the Poisson-Vlasov system. Quart. Appl. Math. 45 (1987) 59-73. | Zbl 0646.65097
,[27] Relativistic stellar dynamics on computer I, Motivation and numerical methods. Astrophys. J. 298 (1985) 34-57.
and ,[28] Relativistic stellar dynamics on computer II, Physical applications. Astrophys. J. 298 (1985) 58-79.
and ,[29] Relativistic stellar dynamics on computer IV, Collapse of a stellar cluster to a black hole. Astrophys. J. 307 (1986) 575-592.
and ,[30] Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev. 119 (1991) 2206-2223.
and ,[31] The convergence theory of particle-in-cell methods for multi-dimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 1207-1241. | Zbl 0741.65072
and ,[32] The convergence analysis of fully discretized particle methods for solving Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 955-989. | Zbl 0777.65058
, and ,