In this paper we derive a posteriori error estimates for the heat equation. The time discretization strategy is based on a θ-method and the mesh used for each time-slab is independent of the mesh used for the previous time-slab. The novelty of this paper is an upper bound for the error caused by the coarsening of the mesh used for computing the solution in the previous time-slab. The technique applied for deriving this upper bound is independent of the problem and can be generalized to other time dependent problems.
@article{M2AN_2010__44_3_455_0,
author = {Berrone, Stefano},
title = {Skipping transition conditions in a posteriori error estimates for finite element discretizations of parabolic equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {44},
year = {2010},
pages = {455-484},
doi = {10.1051/m2an/2010009},
mrnumber = {2666651},
zbl = {1195.65117},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2010__44_3_455_0}
}
Berrone, Stefano. Skipping transition conditions in a posteriori error estimates for finite element discretizations of parabolic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 455-484. doi : 10.1051/m2an/2010009. http://gdmltest.u-ga.fr/item/M2AN_2010__44_3_455_0/
[1] and , Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15 (1978) 736-754. | Zbl 0398.65069
[2] and , An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10 (2001) 1-102. | Zbl 1105.65349
[3] , and , A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2004) 1117-1138. | Zbl 1072.65124
[4] and , Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl 0962.65096
[5] , Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients. ESAIM: M2AM 40 (2006) 991-1021. | Numdam | Zbl 1121.65098
[6] , The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). | Zbl 0511.65078
[7] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008
[8] , A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | Zbl 0854.65090
[9] , and , Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313-348. | Zbl 0857.65131
[10] and , Adaptive finite element methods for parabolic problems. V. Long-time integration. SIAM J. Numer. Anal. 32 (1995) 1750-1763. | Zbl 0835.65117
[11] , , and , Introduction to adaptive methods for differential equations. Acta Numer. 4 (1995) 105-158. | Zbl 0829.65122
[12] , , and , LibMesh. The University of Texas, Austin, CFDLab and Technische Universität Hamburg, Hamburg, http://libmesh.sourceforge.net.
[13] and , Higher order dual Lagrange multiplier spaces for mortar finite element discretizations. Calcolo 39 (2002) 219-237. | Zbl 1168.65414
[14] , and , Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numer. Math. 102 (2005) 93-121. | Zbl 1082.65120
[15] , and , Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631-658. | Zbl 1016.65074
[16] , A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47-75. | Zbl 0997.65123
[17] , Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl 0935.65105
[18] and , Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. | Zbl 0696.65007
[19] , A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons, Chichester-New York (1996). | Zbl 0853.65108
[20] , A posteriori error estimates for finite element discretization of the heat equations. Calcolo 40 (2003) 195-212. | Zbl 1168.65418
[21] , A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. | Zbl 0974.65105
[22] and , A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337-357. | Zbl 0602.73063