Variable depth KdV equations and generalizations to more nonlinear regimes
Israwi, Samer
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010), p. 347-370 / Harvested from Numdam

We study here the water waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known that, for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified [Constantin and Lannes, Arch. Ration. Mech. Anal. 192 (2009) 165-186] when the bottom is flat. We generalize here this result with a new class of equations taking into account variable bottom topographies. Of course, many variable depth KdV equations existing in the literature are recovered as particular cases. Various regimes for the topography regimes are investigated and we prove consistency of these models, as well as a full justification for some of them. We also study the problem of wave breaking for our new variable depth and highly nonlinear generalizations of the KdV equations.

Publié le : 2010-01-01
DOI : https://doi.org/10.1051/m2an/2010005
Classification:  35B40,  76B15
@article{M2AN_2010__44_2_347_0,
     author = {Israwi, Samer},
     title = {Variable depth KdV equations and generalizations to more nonlinear regimes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {44},
     year = {2010},
     pages = {347-370},
     doi = {10.1051/m2an/2010005},
     mrnumber = {2655953},
     zbl = {pre05692909},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2010__44_2_347_0}
}
Israwi, Samer. Variable depth KdV equations and generalizations to more nonlinear regimes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 347-370. doi : 10.1051/m2an/2010005. http://gdmltest.u-ga.fr/item/M2AN_2010__44_2_347_0/

[1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. EDP Sciences, Les Ulis, France (1991). | Zbl 0791.47044

[2] B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics. Invent. Math. 171 (2008) 485-541. | Zbl 1131.76012

[3] B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations. Indiana Univ. Math. J. 57 (2008) 97-131. | Zbl 1144.35007

[4] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. Roy. Soc. London A 227 (1972) 47-78. | Zbl 0229.35013

[5] J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283-318. | Zbl 1022.35044

[6] J.L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178 (2005) 373-410. | Zbl 1108.76012

[7] R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661-1664. | Zbl 0972.35521

[8] A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Processi equations. Arch. Ration. Mech. Anal. 192 (2009) 165-186. | Zbl 1169.76010

[9] W. Craig, An existence theory for water waves and the Boussinesq and the Korteweg-de Vries scaling limits. Commun. Partial Differ. Equations 10 (1985) 787-1003. | Zbl 0577.76030

[10] W. Craig, T. Kappeler and W. Strauss, Gain of regularity for equations of KdV type. Ann. Institut Henri Poincaré, Anal. non linéaire 9 (1992) 147-186. | Numdam | Zbl 0764.35021

[11] A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, A. Degasperis and G. Gaeta Eds., World Scientific, Singapore (1999) 23-37. | Zbl 0963.35167

[12] M.W. Dingemans, Water waves propogation over uneven bottoms. Part 2. Advanced Series on ocean Engineering 13. World Scientific, Singapore (1997). | Zbl 0908.76002

[13] P.G. Drazin and R.S. Johnson, Solitons: an introduction. Cambridge University Press, Cambridge, UK (1992). | Zbl 0661.35001

[14] A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (1976) 237-246. | Zbl 0351.76014

[15] R. Grimshaw and S.R. Pudjaprasetya, Hamiltonian formulation for solitary waves propagating on a variable background. J. Engrg. Math. 36 (1999) 89-98. | Zbl 0934.76011

[16] T. Iguchi, A long wave approximation for capillary-gravity waves and the Kawahara equation. Bull. Inst. Math. Acad. Sin. (N.S.) 2 (2007) 179-220. | Zbl 1151.35084

[17] R.S. Johnson, A modern introduction to the mathematical theory of water waves. Cambridge University Press, Cambridge, UK (1997). | Zbl 0892.76001

[18] R.S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 457 (2002) 63-82. | Zbl 1037.76006

[19] R.S. Johnson, On the development of a solitary wave moving over an uneven bottom. Proc. Cambridge Philos. Soc. 73 (1973) 183-203. | Zbl 0255.76020

[20] J.J. Kirby, Nonlinear ocean surface waves. Center for Applied Coastal research, University of Delaware, USA (2004).

[21] D.J. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Phil. Mag. 39 (1895) 422. | JFM 26.0881.02

[22] D. Lannes, Secular growth estimates for hyperbolic systems. J. Differ. Equ. 190 (2003) 466-503. | Zbl 1052.35119

[23] D. Lannes, Well-posedness of the water waves equations. J. Amer. Math. Soc. 18 (2005) 605-654. | Zbl 1069.35056

[24] D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. J. Funct. Anal. 232 (2006) 495-539. | Zbl 1099.35191

[25] D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21 (2009). | Zbl 1183.76294

[26] J.W. Miles, On the Korteweg-de Vries equation for a gradually varying channel. J. Fluid Mech. 91 (1979) 181-190. | Zbl 0399.76027

[27] V.I. Nalimov, [The Cauchy-Poisson problem]. Dinamika Splošn. Sredy Vyp. 18 Dinamika Zidkost. so Svobod. Granicami 254 (1974) 104-210 (in Russian).

[28] D.H. Peregrine, Calculations of the development of an undular bore. J. Fluid Mech. 25 (1966) 321-330.

[29] S.R. Pudjaprasetya and E. Van Groesen, Unidirectional waves over slowly varying bottom. II. Quasi-homogeneous approximation of distorting waves. Wave Motion 23 (1996) 23-38. | Zbl 0956.76506

[30] S.R. Pudjaprasetya, E. Van Groesen and E. Soewono, The splitting of solitary waves running over a shallower water. Wave Motion 29 (1999) 375-389. | Zbl 1074.76528

[31] G. Schneider and C. Wayne, The long-wave limit for the water wave problem I. The case of zero surface tension. Commun. Pure Appl. Math. 53 (2000) 1475-1535. | Zbl 1034.76011

[32] I.A. Svendsen, A direct derivation of the KDV equation for waves on a beach, and discussion of it's implications. Prog. Rept. 39, ISVA, Tech. Univ. of Denmark (1976) 9-14.

[33] E. Van Groesen and S.R. Pudjaprasetya, Uni-directional waves over slowly varying bottom. I. Derivation of a KdV-type of equation. Wave Motion 18 (1993) 345-370. | Zbl 0819.76012

[34] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39-72. | Zbl 0892.76009

[35] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445-495. | Zbl 0921.76017

[36] S.B. Yoon and P.L.-F. Liu, A note on Hamiltonian for long water waves in varying depth. Wave Motion 20 (1994) 359-370. | Zbl 0929.76019

[37] H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982) 49-96. | Zbl 0493.76018