We investigate unilateral contact problems with cohesive forces, leading to the constrained minimization of a possibly nonconvex functional. We analyze the mathematical structure of the minimization problem. The problem is reformulated in terms of a three-field augmented lagrangian, and sufficient conditions for the existence of a local saddle-point are derived. Then, we derive and analyze mixed finite element approximations to the stationarity conditions of the three-field augmented lagrangian. The finite element spaces for the bulk displacement and the Lagrange multiplier must satisfy a discrete inf-sup condition, while discontinuous finite element spaces spanned by nodal basis functions are considered for the unilateral contact variable so as to use collocation methods. Two iterative algorithms are presented and analyzed, namely an Uzawa-type method within a decomposition-coordination approach and a nonsmooth Newton's method. Finally, numerical results illustrating the theoretical analysis are presented.
@article{M2AN_2010__44_2_323_0, author = {Doyen, David and Ern, Alexandre and Piperno, Serge}, title = {A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {323-346}, doi = {10.1051/m2an/2010004}, mrnumber = {2655952}, zbl = {1192.74355}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_2_323_0} }
Doyen, David; Ern, Alexandre; Piperno, Serge. A three-field augmented lagrangian formulation of unilateral contact problems with cohesive forces. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 323-346. doi : 10.1051/m2an/2010004. http://gdmltest.u-ga.fr/item/M2AN_2010__44_2_323_0/
[1] A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Engrg. 92 (1991) 353-375. | Zbl 0825.76353
and ,[2] Stability of finite element mixed interpolations for contact problems. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001) 167-183. | Zbl 1097.74054
and ,[3] Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific (1982). | Zbl 0572.90067
,[4] Nonlinear Programming. Athena Scientific (1999). | Zbl 1015.90077
,[5] The variational approach to fracture. J. Elasticity 91 (2008) 5-148. | Zbl 1176.74018
, and ,[6] Modular analysis of assemblages of three-dimensional structures with unilateral contact conditions. Comput. Struct. 73 (1999) 249-266. | Zbl 1049.74562
, and ,[7] On the augmented Lagrangian approach to Signorini elastic contact problem. Numer. Math. 88 (2001) 641-659. | Zbl 1047.74054
,[8] Mathematical elasticity, Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). | Zbl 0648.73014
,[9] Optimization and nonsmooth analysis, Classics in Applied Mathematics 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA, second edition (1990). | Zbl 0696.49002
,[10] An introduction to nonlinear analysis: applications. Kluwer Academic Publishers, Boston, USA (2003). | Zbl 1040.46001
, and ,[11] Convex analysis and variational problems, Classics in Applied Mathematics. 28. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1999). | Zbl 0939.49002
and ,[12] Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, USA (2004). | Zbl 1059.65103
and ,[13] Augmented Lagrangian methods: Applications to the numerical solution of boundary value problems, Studies in Mathematics and its Applications 15. North-Holland Publishing Co., Amsterdam (1983). | Zbl 0525.65045
and ,[14] Contact with adhesion, in Topics in nonsmooth mechanics, Birkhäuser, Basel, Switzerland (1988) 157-185. | Zbl 0656.73051
,[15] Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Studies in Applied Mathematics 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1989). | Zbl 0698.73001
and ,[16] Numerical methods for unilateral problems in solid mechanics, in Handbook of numerical analysis IV, Amsterdam, North-Holland (1996) 313-485. | Zbl 0873.73079
, and ,[17] A discontinuous stabilized mortar method for general 3d elastic problems. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4881-4900. | Zbl 1173.74424
and ,[18] Quadratic finite element methods for unilateral contact problems. Appl. Numer. Math. 41 (2002) 401-421. | Zbl 1062.74050
and ,[19] An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005) 156-173 (electronic). | Zbl 1083.74047
and ,[20] Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (1988). | Zbl 0685.73002
and ,[21] Remarks about Signorini's problem in linear elasticity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981) 605-645. | Numdam | Zbl 0482.73017
,[22] Generalized Newton methods for the 2D-Signorini contact problem with friction in function space. ESAIM: M2AN 39 (2005) 827-854. | Numdam | Zbl pre02213941
and ,[23] Nonlinear Computational Structural Mechanics - New Approaches and Non-Incremental Methods of Calculation. Springer-Verlag (1999). | Zbl 0912.73003
,[24] Non-homogeneous boundary value problems and applications I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New York, USA (1972). | Zbl 0223.35039
and ,[25] A mixed interface finite element for cohesive zone models. Comput. Methods Appl. Mech. Engrg. 198 (2008) 302-317. | Zbl 1194.74438
,[26] Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33 (1979) 217-229. | Zbl 0418.46024
and ,[27] Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Commun. Partial Differ. Equ. 17 (1992) 805-826. | Zbl 0806.35049
and ,[28] A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353-367. | Zbl 0780.90090
and ,[29] Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | Zbl 1100.65059
, and ,