In this paper, a weighted regularization method for the time-harmonic Maxwell equations with perfect conducting or impedance boundary condition in composite materials is presented. The computational domain Ω is the union of polygonal or polyhedral subdomains made of different materials. As a result, the electromagnetic field presents singularities near geometric singularities, which are the interior and exterior edges and corners. The variational formulation of the weighted regularized problem is given on the subspace of (;Ω) whose fields satisfy div ()∈ L2(Ω) and have vanishing tangential trace or tangential trace in L2(). The weight function is equivalent to the distance of to the geometric singularities and the minimal weight parameter α is given in terms of the singular exponents of a scalar transmission problem. A density result is proven that guarantees the approximability of the solution field by piecewise regular fields. Numerical results for the discretization of the source problem by means of Lagrange Finite Elements of type P1 and P2 are given on uniform and appropriately refined two-dimensional meshes. The performance of the method in the case of eigenvalue problems is addressed.
@article{M2AN_2010__44_1_75_0, author = {Ciarlet Jr., Patrick and Lef\`evre, Fran\c cois and Lohrengel, St\'ephanie and Nicaise, Serge}, title = {Weighted regularization for composite materials in electromagnetism}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {44}, year = {2010}, pages = {75-108}, doi = {10.1051/m2an/2009041}, mrnumber = {2647754}, zbl = {1192.78039}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2010__44_1_75_0} }
Ciarlet Jr., Patrick; Lefèvre, François; Lohrengel, Stéphanie; Nicaise, Serge. Weighted regularization for composite materials in electromagnetism. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 44 (2010) pp. 75-108. doi : 10.1051/m2an/2009041. http://gdmltest.u-ga.fr/item/M2AN_2010__44_1_75_0/
[1] Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | Zbl 0914.35094
, , and ,[2] On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993) 222-237. | Zbl 0795.65087
, , , and ,[3] Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method. J. Comput. Phys. 128 (1996) 363-380. | Zbl 0862.65077
, and ,[4] Resolution of the Maxwell equations in a domain with reentrant corners. Math. Mod. Num. Anal. 32 (1998) 359-389. | Numdam | Zbl 0924.65111
, and ,[5] A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain. Math. Meth. Appl. Sci. 22 (1999) 485-499. | Zbl 0931.35169
, , and ,[6] Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161 (2000) 218-249. | Zbl 1007.78014
, and ,[7] L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 75-96. | Zbl 0653.35075
and ,[8] On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5 (1993) 125-139. | Zbl 0804.35127
and ,[9] On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131-154. | Numdam | Zbl 1003.65052
, and ,[10] A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028-2044. | Zbl 0933.78007
, and ,[11] Solving electromagnetic eigenvalue problems in polyhedral domains. Numer. Math. 113 (2009) 497-518. | Zbl 1180.78048
, and ,[12] Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559-586. | Zbl 1063.78018
,[13] Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358-365. | Zbl 1194.78053
and ,[14] Mixed, augmented variational formulations for Maxwell's equations: Numerical analysis via the macroelement technique. Numer. Math. (Submitted).
and ,[15] Les équations de Maxwell dans un polyèdre : un résultat de densité. C. R. Acad. Sci. Paris, Ser. I 326 (1998) 1305-1310. | Zbl 0915.35099
, and ,[16] Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris, Ser. I 327 (1998) 849-854. | Zbl 0921.35169
and ,[17] Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221-276. | Zbl 0968.35113
and ,[18] Weighted regularization of Maxwell's equations in polyhedral domains. Numer. Math. 93 (2002) 239-277. | Zbl 1019.78009
and ,[19] Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627-649. | Numdam | Zbl 0937.78003
, and ,[20] Benchmark computations for Maxwell equations for the approximation of highly singular solutions. (2004). See Monique Dauge's personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html
,[21] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. Appl. Sci. 7 (1997) 957-991. | Zbl 0910.35123
and ,[22] Edge behaviour of the solution of an elliptic problem. Math. Nachr. 132 (1987) 281-299. | Zbl 0639.35008
,[23] Singularities in boundary value problems, RMA 22. Masson (1992). | Zbl 0766.35001
,[24] On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 1597-1630. | Zbl 0860.35129
and ,[25] A singular field method for Maxwell's equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40 (2002) 1021-1040. | Zbl 1055.78011
and ,[26] Elliptic interface problems in axisymmetric domains. I: Singular functions of non-tensorial type. Math. Nachr. 186 (1997) 147-165. | Zbl 0890.35035
, and ,[27] Computation of singular solutions in elliptic problems and elasticity, RMA 5. Masson (1987). | Zbl 0647.73010
and ,[28] Singularities and density problems for composite materials in electromagnetism. Comm. Partial Diff. Eq. 27 (2002) 1575-1623. | Zbl 1042.78014
and ,[29] Dirichlet problems in polyhedral domains. I: Regularity of the solutions. Math. Nachr. 168 (1994) 243-261. | Zbl 0844.35014
and ,[30] Finite element methods for Maxwell's equations. Oxford University Press, UK (2003). | Zbl 1024.78009
,[31] dans un polygone plan. C. R. Acad. Sci. Paris, Ser. I 322 (1996) 225-229. | Zbl 0852.46034
,[32] Elliptic problems in domains with piecewise smooth boundaries, Exposition in Mathematics 13. De Gruyter, Berlin, Germany (1994). | Zbl 0806.35001
and ,[33] Polygonal interface problems. Peter Lang, Berlin, Germany (1993). | Zbl 0794.35040
,[34] General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395-450. | Zbl 0824.35014
and ,[35] Domain decomposition. Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, New York, USA (1996). | Zbl 0857.65126
, and ,