We consider a variational formulation of the three-dimensional Navier-Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.
@article{M2AN_2009__43_6_1185_0, author = {Bernardi, Christine and Hecht, Fr\'ed\'eric and Verf\"urth, R\"udiger}, title = {A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {1185-1201}, doi = {10.1051/m2an/2009035}, mrnumber = {2588437}, zbl = {pre05636851}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_6_1185_0} }
Bernardi, Christine; Hecht, Frédéric; Verfürth, Rüdiger. A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 1185-1201. doi : 10.1051/m2an/2009035. http://gdmltest.u-ga.fr/item/M2AN_2009__43_6_1185_0/
[1] Vorticity-velocity-pressure formulation for the Stokes problem. Math. Comput. 73 (2003) 1673-1697. | Zbl 1068.76047
, , and ,[2] Stabilized finite element method for the Navier-Stokes equations with physical boundary conditions. Math. Comput. 76 (2007) 1195-1217. | MR 2299771 | Zbl 1119.76037
, and ,[3] Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | MR 1626990 | Zbl 0914.35094
, , and ,[4] Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar IX, H. Brezis and J.-L. Lions Eds., Pitman (1988) 179-264. | Zbl 0687.35069
, , and ,[5] Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer (2004). | MR 2068204 | Zbl 1063.65119
, and ,[6] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer, Berlin (1991). | MR 1115205 | Zbl 0788.73002
and ,[7] Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/1981) 1-25. | MR 595803 | Zbl 0488.65021
, and ,[8] Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids 20 (1995) 267-287. | MR 1316046 | Zbl 0831.76011
, , and ,[9] A remark on the regularity of solutions of Maxwell's equations on Lipschitz domain. Math. Meth. Appl. Sci. 12 (1990) 365-368. | MR 1048563 | Zbl 0699.35028
,[10] Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, Springer (2004) 125-161. | MR 2032869 | Zbl 1116.78002
and ,[11] Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | MR 1924283 | Zbl 1099.76049
,[12] Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82 (2003) 1395-1451. | MR 2020806 | Zbl 1070.76014
, and ,[13] Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955) 551-590. | MR 87763 | Zbl 0066.07504
,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer (1986). | MR 851383 | Zbl 0585.65077
and ,[15] Freefem++. Second edition, v. 3.0-1, Université Pierre et Marie Curie, Paris, France (2007), http://www.freefem.org/ff++/ftp/freefem++doc.pdf.
, , and ,[16] Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications 13. Springer (1993). | MR 1276944 | Zbl 0797.58005
,[17] Problèmes aux limites non homogènes et applications 1. Dunod (1968). | Zbl 0165.10801
and ,[18] Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domain, Dekker (1995) 185-201. | MR 1301349 | Zbl 0826.35095
and ,[19] Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | MR 1310318 | Zbl 0822.65034
and ,[20] Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (1999).
,[21] Basic Linear Partial Differential Equations. Academic Press (1975). | MR 447753 | Zbl 0305.35001
,[22] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley (1996). | Zbl 0853.65108
,