A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions
Bernardi, Christine ; Hecht, Frédéric ; Verfürth, Rüdiger
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 1185-1201 / Harvested from Numdam

We consider a variational formulation of the three-dimensional Navier-Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an/2009035
Classification:  65N30,  65N15,  65J15
@article{M2AN_2009__43_6_1185_0,
     author = {Bernardi, Christine and Hecht, Fr\'ed\'eric and Verf\"urth, R\"udiger},
     title = {A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {1185-1201},
     doi = {10.1051/m2an/2009035},
     mrnumber = {2588437},
     zbl = {pre05636851},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_6_1185_0}
}
Bernardi, Christine; Hecht, Frédéric; Verfürth, Rüdiger. A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 1185-1201. doi : 10.1051/m2an/2009035. http://gdmltest.u-ga.fr/item/M2AN_2009__43_6_1185_0/

[1] M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Comput. 73 (2003) 1673-1697. | Zbl 1068.76047

[2] M. Amara, D. Capatina-Papaghiuc and D. Trujillo, Stabilized finite element method for the Navier-Stokes equations with physical boundary conditions. Math. Comput. 76 (2007) 1195-1217. | MR 2299771 | Zbl 1119.76037

[3] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | MR 1626990 | Zbl 0914.35094

[4] C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar IX, H. Brezis and J.-L. Lions Eds., Pitman (1988) 179-264. | Zbl 0687.35069

[5] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer (2004). | MR 2068204 | Zbl 1063.65119

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer, Berlin (1991). | MR 1115205 | Zbl 0788.73002

[7] F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/1981) 1-25. | MR 595803 | Zbl 0488.65021

[8] C. Conca, C. Parés, O. Pironneau and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids 20 (1995) 267-287. | MR 1316046 | Zbl 0831.76011

[9] M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domain. Math. Meth. Appl. Sci. 12 (1990) 365-368. | MR 1048563 | Zbl 0699.35028

[10] M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, Springer (2004) 125-161. | MR 2032869 | Zbl 1116.78002

[11] F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | MR 1924283 | Zbl 1099.76049

[12] F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82 (2003) 1395-1451. | MR 2020806 | Zbl 1070.76014

[13] K.O. Friedrichs, Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955) 551-590. | MR 87763 | Zbl 0066.07504

[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer (1986). | MR 851383 | Zbl 0585.65077

[15] F. Hecht, A. Le Hyaric, K. Ohtsuka and O. Pironneau, Freefem++. Second edition, v. 3.0-1, Université Pierre et Marie Curie, Paris, France (2007), http://www.freefem.org/ff++/ftp/freefem++doc.pdf.

[16] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications 13. Springer (1993). | MR 1276944 | Zbl 0797.58005

[17] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod (1968). | Zbl 0165.10801

[18] M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domain, Dekker (1995) 185-201. | MR 1301349 | Zbl 0826.35095

[19] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213-231. | MR 1310318 | Zbl 0822.65034

[20] S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (1999).

[21] F. Trèves, Basic Linear Partial Differential Equations. Academic Press (1975). | MR 447753 | Zbl 0305.35001

[22] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley (1996). | Zbl 0853.65108