Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities
Cancès, Clément
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 973-1001 / Harvested from Numdam

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step tends to 0 is then proven. We also show, under assumptions on the initial data, a uniform estimate on the flux, which is then used during the uniqueness proof. A density argument allows us to relax the assumptions on the initial data and to extend the existence-uniqueness frame to a family of solution obtained as limit of approximations. A numerical example is then given to illustrate the behavior of the model.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an/2009032
Classification:  35R05,  65M12
@article{M2AN_2009__43_5_973_0,
     author = {Canc\`es, Cl\'ement},
     title = {Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {973-1001},
     doi = {10.1051/m2an/2009032},
     mrnumber = {2559741},
     zbl = {1171.76035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_5_973_0}
}
Cancès, Clément. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 973-1001. doi : 10.1051/m2an/2009032. http://gdmltest.u-ga.fr/item/M2AN_2009__43_5_973_0/

[1] Adimurthi and G.D. Veerappa Gowda, Conservation law with discontinuous flux. J. Math. Kyoto Univ. 43 (2003) 27-70. | MR 2028700 | Zbl 1063.35114

[2] Adimurthi, J. Jaffré and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179-208 (electronic). | MR 2051062 | Zbl 1081.65082

[3] Adimurthi, S. Mishra and G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783-837. | MR 2195983 | Zbl 1093.35045

[4] Adimurthi, S. Mishra and G.D. Veerappa Gowda, , Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Netw. Heterog. Media 2 (2007) 127-157 (electronic). | MR 2291815 | Zbl 1142.35508

[5] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | MR 706391 | Zbl 0497.35049

[6] F. Bachmann, Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Adv. Differ. Equ. 9 (2004) 1317-1338. | MR 2099558 | Zbl 1102.35063

[7] F. Bachmann, Equations hyperboliques scalaires à flux discontinu. Ph.D. Thesis, Université Aix-Marseille I, France (2005).

[8] F. Bachmann, Finite volume schemes for a non linear hyperbolic conservation law with a flux function involving discontinuous coefficients. Int. J. Finite Volumes 3 (2006) (electronic). | MR 2465463

[9] F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm. Partial Differ. Equ. 31 (2006) 371-395. | MR 2209759 | Zbl 1102.35064

[10] M. Bertsch, R. Dal Passo and C.J. Van Duijn, Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35 (2003) 245-267 (electronic). | MR 2001474 | Zbl 1049.35108

[11] D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection. J. Differ. Equ. 210 (2005) 383-428. | MR 2119989 | Zbl 1075.35112

[12] H. Brézis, Analyse Fonctionnelle : Théorie et applications. Masson (1983). | MR 697382 | Zbl 0511.46001

[13] C. Cancès, Écoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse des effets liés aux discontinuités de la pression capillaire. Ph.D. Thesis, Université de Provence, France (2008).

[14] C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Differ. Equ. Appl. 15 (2008) 427-456. | MR 2465972 | Zbl pre05617589

[15] C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. I. Convergence to an entropy solution. arXiv:0902.1877 (submitted).

[16] C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. II. Occurrence of non-classical shocks to model oil-trapping. arXiv:0902.1872 (submitted).

[17] C. Cancès and T. Gallouët, On the time continuity of entropy solutions. arXiv:0812.4765v1 (2008).

[18] C. Cancès, T. Gallouët and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound. 11 (2009) 239-258. | MR 2511641 | Zbl 1178.35196

[19] J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269-361. | MR 1709116 | Zbl 0935.35056

[20] C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129-156. | Numdam | MR 1685749 | Zbl 0921.65071

[21] J. Droniou, A density result in Sobolev spaces. J. Math. Pures Appl. (9) 81 (2002) 697-714. | MR 1968338 | Zbl 1033.46029

[22] G. Enchéry, R. Eymard and A. Michel, Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43 (2006) 2402-2422. | MR 2206441 | Zbl 1145.76046

[23] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | MR 1681074 | Zbl 0973.65078

[24] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (2000) 713-1020. | MR 1804748 | Zbl 0981.65095

[25] G. Gagneux and M. Madaune-Tort, Unicité des solutions faibles d'équations de diffusion-convection. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 919-924. | MR 1278152 | Zbl 0826.35057

[26] J. Jimenez, Some scalar conservation laws with discontinuous flux. Int. J. Evol. Equ. 2 (2007) 297-315. | MR 2337529 | Zbl 1133.35405

[27] K.H. Karlsen, N.H. Risebro and J.D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differ. Equ. 2002 (2002) n 93, 1-23 (electronic). | MR 1938389 | Zbl 1015.35049

[28] K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623-664. | MR 1937244 | Zbl 1014.65073

[29] K.H. Karlsen, N.H. Risebro and J.D. Towers, L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3 (2003) 1-49. | MR 2024741 | Zbl 1036.35104

[30] C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163 (2002) 87-124. | MR 1911095 | Zbl 1027.35081

[31] A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41 (2003) 2262-2293 (electronic). | MR 2034615 | Zbl 1058.35127

[32] A. Michel, C. Cancès, T. Gallouët and S. Pegaz, Numerical comparison of invasion percolation models and finite volume methods for buoyancy driven migration of oil in discontinuous capillary pressure fields. (In preparation).

[33] F. Otto, L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131 (1996) 20-38. | MR 1415045 | Zbl 0862.35078

[34] N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221-257. | MR 1961002 | Zbl 1078.35011

[35] J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38 (2000) 681-698 (electronic). | MR 1770068 | Zbl 0972.65060

[36] J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197-1218 (electronic). | MR 1870839 | Zbl 1055.65104

[37] C.J. Van Duijn, J. Molenaar and M.J. De Neef, The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transport Porous Med. 21 (1995) 71-93.

[38] J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563-596. | MR 1884231 | Zbl 1007.65066