In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the and norms for the standard finite volume element scheme and an improved error estimate in the norm. Numerical results demonstrate the accuracy and efficiency of the procedure.
@article{M2AN_2009__43_5_957_0, author = {Yang, Min and Bi, Chunjia and Liu, Jiangguo}, title = {Postprocessing of a finite volume element method for semilinear parabolic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {957-971}, doi = {10.1051/m2an/2009017}, mrnumber = {2559740}, zbl = {1176.65102}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_5_957_0} }
Yang, Min; Bi, Chunjia; Liu, Jiangguo. Postprocessing of a finite volume element method for semilinear parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 957-971. doi : 10.1051/m2an/2009017. http://gdmltest.u-ga.fr/item/M2AN_2009__43_5_957_0/
[1] Sobolev Spaces. Academic Press, New York (2003). | MR 2424078 | Zbl 1098.46001
and ,[2] Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 107 (2007) 177-198. | MR 2358002 | Zbl 1134.65077
and ,[3] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2nd edn., (2002). | MR 1894376 | Zbl 0804.65101
and ,[4] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | MR 1090257 | Zbl 0731.65093
,[5] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR 1087511 | Zbl 0729.65086
, and ,[6] Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42 (2005) 2496-2521. | MR 2139403 | Zbl 1084.65112
, and ,[7] Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains. SIAM J. Numer. Anal. 42 (2004) 1932-1958. | MR 2139231 | Zbl 1079.65109
and ,[8] Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Meth. PDEs 20 (2004) 650-674. | MR 2076342 | Zbl 1067.65092
, and ,[9] Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90 (2002) 459-486. | MR 1884225 | Zbl 0995.65127
and ,[10] Error estimates in , and in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69 (2000) 103-120. | MR 1680859 | Zbl 0936.65127
and ,[11] error estimates and superconvergence for covolume or finite volume element methods. Numer. Meth. PDEs 19 (2003) 463-486. | MR 1980190 | Zbl 1029.65123
, and ,[12] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[13] A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35 (1998) 435-452. | MR 1618822 | Zbl 0927.65107
, and ,[14] Postprocessing the linear finite element method. SIAM J. Numer. Anal. 40 (2002) 805-819. | MR 1949394 | Zbl 1022.65116
and ,[15] On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865-1888. | MR 1897941 | Zbl 1036.65084
, and ,[16] Finite Volume Methods: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000). | MR 1804748 | Zbl 0981.65095
, and ,[17] Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 1528-1548. | MR 1706727 | Zbl 0960.65098
, , and ,[18] Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. | MR 1619914 | Zbl 0914.65105
, and ,[19] Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal. 37 (2000) 470-499. | MR 1740770 | Zbl 0952.65078
and ,[20] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840. Springer-Verlag, New York (1989). | MR 610244 | Zbl 0456.35001
,[21] -version discontinuous Galerkin finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 45 (2007) 1544-1569. | MR 2338399 | Zbl 1155.65073
and ,[22] Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000). | MR 1731376 | Zbl 0940.65125
, and ,[23] Symmetric finite volume discretizations for parabolic problems. Comput. Methods Appl. Mech. Engrg. 192 (2003) 4467-4485. | MR 2008076 | Zbl 1038.65079
, and ,[24] Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170-1184. | MR 1342288 | Zbl 0853.65092
and ,[25] Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J. Comput. Appl. Math. 146 (2002) 373-386. | MR 1925967 | Zbl 1020.65066
,[26] Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980) 265-304. | MR 562737 | Zbl 0414.65066
, and ,[27] Error estimates for finite volume element methods for convection-diffusion-reaction equations. Appl. Numer. Math. 57 (2007) 59-72. | MR 2279506 | Zbl 1175.65106
and ,[28] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68. Springer-Verlag, Berlin (1988). | MR 953967 | Zbl 0662.35001
,[29] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR 1479170 | Zbl 0884.65097
,[30] On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal. 12 (1975) 378-389. | MR 395269 | Zbl 0307.35007
and ,[31] Postprocessing the finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 44 (2006) 1681-1702. | MR 2257122 | Zbl 1129.65070
,[32] A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: M2AN 40 (2006) 1053-1067. | Numdam | MR 2297104 | Zbl 1141.65081
,[33] A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44 (2006) 183-198. | MR 2217378 | Zbl 1112.65125
,[34] On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196 (2006) 24-32. | MR 2270124 | Zbl 1120.65339
,