This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law on a closed riemannian manifold For an initial value in BV() we will show that these schemes converge with a convergence rate towards the entropy solution. When is -dimensional the schemes are TVD and we will show that this improves the convergence rate to
@article{M2AN_2009__43_5_929_0, author = {Giesselmann, Jan}, title = {A convergence result for finite volume schemes on riemannian manifolds}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {929-955}, doi = {10.1051/m2an/2009013}, mrnumber = {2559739}, zbl = {1173.74454}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_5_929_0} }
Giesselmann, Jan. A convergence result for finite volume schemes on riemannian manifolds. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 929-955. doi : 10.1051/m2an/2009013. http://gdmltest.u-ga.fr/item/M2AN_2009__43_5_929_0/
[1] Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12 (2005) 291-323. | MR 2254012 | Zbl 1114.35121
, and ,[2] Well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. H. Poincaré Anal. Non Linéaire 24 (2007) 989-1008. | Numdam | MR 2371116 | Zbl 1138.35055
and ,[3] Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50 (2008) 723-752. Available at http://www.amath.washington.edu/rjl/pubs/circles. | MR 2460802 | Zbl 1155.65061
, and ,[4] The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (1996) 1531-1552. | MR 1443241 | Zbl 1087.76057
and ,[5] A “shallow-water” theory for the sun's active longitudes. Astrophys. J. Lett. 635 (2005) L193-L196.
and ,[6] Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, USA (1992). | MR 1138207 | Zbl 0752.53001
,[7] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | MR 1681074 | Zbl 0973.65078
, , and ,[8] Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11 (2008) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2008-7. | Zbl 1166.83003
,[9] Magnetohydrodynamic “shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544 (2000) L79-L82.
,[10] Lagrange-Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136 (1997) 197-213. | MR 1468632 | Zbl 0909.65066
,[11] High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214 (2006) 447-465. | MR 2216597 | Zbl 1089.65096
,[12] Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11 (1999) 1272-1274. | Zbl 1147.76422
, and ,[13] Riemannian Geometry and Geometric Analysis. Springer Universitext, Springer (2002). | MR 1871261 | Zbl 1034.53001
,[14] Spatial discretization of the shallow water equations in spherical geometry using osher's scheme. J. Comput. Phys. 165 (2000) 542-565. | Zbl 1043.76044
, and ,[15] Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6 (2003) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2003-7. | MR 2033709 | Zbl 1068.83502
and ,[16] Heat semigroup and functions of bounded variation on Riemannian manifolds. J. reine angew. Math. 613 (2007) 99-119. | MR 2377131 | Zbl 1141.58014
, , and ,[17] A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorolog. Soc. 122 (1996) 959-982.
, and ,[18] The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124 (1996) 93-114. | MR 1378553 | Zbl 0849.76049
, and ,[19] A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213 (2006) 629-658. | MR 2208375 | Zbl 1089.65088
,[20] A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199 (2004) 631-662. | MR 2091909 | Zbl 1126.76350
, and ,[21] “Shallow-water”“Shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551 (2001) L185-L188.
, and ,[22] Observation of diffraction-free propagation of surface acoustic waves around a homogeneous isotropic solid sphere. Appl. Phys. Lett. 77 (2000) 2926-2928.
, , and ,