Mixed approximation of eigenvalue problems : a superconvergence result
Gardini, Francesca
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 853-865 / Harvested from Numdam

We state a superconvergence result for the lowest order Raviart-Thomas approximation of eigenvalue problems. It is known that a similar superconvergence result holds for the mixed approximation of Laplace problem; here we introduce a new proof, since the one given for the source problem cannot be generalized in a straightforward way to the eigenvalue problem. Numerical experiments confirm the superconvergence property and suggest that it also holds for the lowest order Brezzi-Douglas-Marini approximation.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an/2009005
Classification:  65N25,  65N30,  65Q60
@article{M2AN_2009__43_5_853_0,
     author = {Gardini, Francesca},
     title = {Mixed approximation of eigenvalue problems : a superconvergence result},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {853-865},
     doi = {10.1051/m2an/2009005},
     mrnumber = {2559736},
     zbl = {pre05608354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_5_853_0}
}
Gardini, Francesca. Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 853-865. doi : 10.1051/m2an/2009005. http://gdmltest.u-ga.fr/item/M2AN_2009__43_5_853_0/

[1] R.A. Adams, Sobolev spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975). | MR 450957 | Zbl 0314.46030

[2] A. Alonso, A. Dello Russo and A. Vampa, A posteriori error estimates in finite element acoustic analysis. J. Comput. Appl. Math. 117 (2000) 105-119. | MR 1758220 | Zbl 0972.76053

[3] A. Alonso, A. Dello Russo, C. Padra and R. Rodriguez, Accurate pressure post-process of a finite element method for elastoacoustics. Numer. Math. 98 (2004) 389-425. | MR 2088922 | Zbl 1140.76456

[4] D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | MR 813687 | Zbl 0567.65078

[5] I. Babǔska and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis 2, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991). | MR 1115240 | Zbl 0875.65087

[6] D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131-154. | Numdam | MR 1655512 | Zbl 1003.65052

[7] D. Boffi, F. Kikuci and J. Schöberl, Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16 (2006) 265-273. | MR 2210090 | Zbl 1097.65113

[8] J.H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994) 311-324. | MR 1313147 | Zbl 0823.65103

[9] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[10] P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its application 4. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[11] R. Durán, L. Gastaldi and C. Padra, A posteriori error estimations for mixed approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165-1178. | MR 1722056 | Zbl 1012.65112

[12] F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ist. lombardo Accd. Sci. Lett. Rend. A. 138 (2004) 17-34.

[13] F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interactions, Computational Fluid and Solid Mechanics. Elsevier, Amsterdam (2005).

[14] F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ph.D. Thesis, Università degli Studi di Pavia, Pavia, Italy (2005).

[15] P. Grisvard, Elliptic problem in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060

[16] J-.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Matheḿatiques 17. Dunod, Paris (1968). | Zbl 0165.10801

[17] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493-496. | MR 787572 | Zbl 0573.65082