We derive a posteriori estimates for a discretization in space of the standard Cahn-Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.
@article{M2AN_2009__43_5_1003_0, author = {Ba\v nas, \v Lubom\'\i r and N\"urnberg, Robert}, title = {A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {1003-1026}, doi = {10.1051/m2an/2009015}, mrnumber = {2559742}, zbl = {pre05608360}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_5_1003_0} }
Baňas, Ľubomír; Nürnberg, Robert. A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 1003-1026. doi : 10.1051/m2an/2009015. http://gdmltest.u-ga.fr/item/M2AN_2009__43_5_1003_0/
[1] The convergence of solutions of the Cahn-Hilliard equation to the solution of the Hele-Shaw model. Arch. Rational Mech. Anal. 128 (1994) 165-205. | MR 1308851 | Zbl 0828.35105
, and ,[2] Adaptive finite element methods for Cahn-Hilliard equations. J. Comput. Appl. Math. 218 (2008) 2-11. | MR 2431593 | Zbl 1143.65076
and ,[3] Finite element approximation of a three dimensional phase field model for void electromigration. J. Sci. Comp. 37 (2008) 202-232. | MR 2453219
and ,[4] Phase field computations for surface diffusion and void electromigration in . Comput. Vis. Sci. (2008), doi: 10.1007/s00791-008-0114-0.
and ,[5] Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997) 1-34. | MR 1464653 | Zbl 0882.65129
and ,[6] Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | MR 1742748 | Zbl 0947.65109
, and ,[7] Finite element approximation of a phase field model for void electromigration. SIAM J. Numer. Anal. 42 (2004) 738-772. | MR 2084234 | Zbl 1076.78012
, and ,[8] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis. European J. Appl. Math. 2 (1991) 233-279. | MR 1123143 | Zbl 0797.35172
and ,[9] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis. European J. Appl. Math. 3 (1992) 147-179. | MR 1166255 | Zbl 0810.35158
and ,[10] A posteriori error estimators for obstacle problems - another look. Numer. Math. 101 (2005) 415-421. | MR 2194822 | Zbl 1118.65068
,[11] On spinodal decomposition. Acta Metall. 9 (1961) 795-801.
,[12] Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28 (1958) 258-267.
and ,[13] Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differ. Equ. 19 (1994) 1371-1395. | MR 1284813 | Zbl 0811.35098
,[14] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR 1742264 | Zbl 0943.65075
and ,[15] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008
,[16] On the Cahn-Hilliard equation. Arch. Rational Mech. Anal. 96 (1986) 339-357. | MR 855754 | Zbl 0624.35048
and ,[17] A second order splitting method for the Cahn-Hilliard equation. Numer. Math. 54 (1989) 575-590. | MR 978609 | Zbl 0668.65097
, and ,[18] Error analysis of a mixed finite element method for the Cahn-Hilliard equation. Numer. Math. 99 (2004) 47-84. | MR 2101784 | Zbl 1071.65128
and ,[19] A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the Hele-Shaw flow. J. Comput. Math. 26 (2008) 767-796. | MR 2464735 | Zbl 1174.65035
and ,[20] Goal-oriented adaptivity in control constrained optimal control of partial differential equations. SIAM J. Control Optim. 47 (2008) 1721-1743. | MR 2421327 | Zbl 1167.49029
and ,[21] An a posteriori error analysis of adaptive finite element methods for distributed elliptic control problems with control constraints. ESAIM: COCV 14 (2008) 540-560. | Numdam | MR 2434065 | Zbl 1157.65039
, , and ,[22] Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511-543. | MR 2030475 | Zbl 1109.76348
, and ,[23] Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512. | Numdam | MR 921549 | Zbl 0642.49009
,[24] A posteriori error analysis for parabolic variational inequalities. ESAIM: M2AN 41 (2007) 485-511. | Numdam | MR 2355709 | Zbl 1142.65053
, , and ,[25] Positivity preserving finite element approximation. Math. Comp. 71 (2002) 1405-1419. | MR 1933037 | Zbl 1001.41011
and ,[26] Front migration in the nonlinear Cahn-Hilliard equation. Proc. Roy. Soc. London Ser. A 422 (1989) 261-278. | MR 997638 | Zbl 0701.35159
,[27] Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | MR 1860720 | Zbl 0992.65073
,[28] On a posteriori error estimation for constant obstacle problems, in Numerical methods for viscosity solutions and applications (Heraklion, 1999), M. Falcone and C. Makridakis Eds., Ser. Adv. Math. Appl. Sci. 59, World Sci. Publ., River Edge, USA (2001) 221-234. | MR 1886715 | Zbl 0988.65047
,[29] A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley, New York (1996). | Zbl 0853.65108
,