A model of macroscale deformation and microvibration in skeletal muscle tissue
Simeon, Bernd ; Serban, Radu ; Petzold, Linda R.
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 805-823 / Harvested from Numdam

This paper deals with modeling the passive behavior of skeletal muscle tissue including certain microvibrations at the cell level. Our approach combines a continuum mechanics model with large deformation and incompressibility at the macroscale with chains of coupled nonlinear oscillators. The model verifies that an externally applied vibration at the appropriate frequency is able to synchronize microvibrations in skeletal muscle cells. From the numerical analysis point of view, one faces here a partial differential-algebraic equation (PDAE) that after semi-discretization in space by finite elements possesses an index up to three, depending on certain physical parameters. In this context, the consequences for the time integration as well as possible remedies are discussed.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an/2009030
Classification:  65L05,  65M12,  65M20,  74C05
@article{M2AN_2009__43_4_805_0,
     author = {Simeon, Bernd and Serban, Radu and Petzold, Linda R.},
     title = {A model of macroscale deformation and microvibration in skeletal muscle tissue},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {805-823},
     doi = {10.1051/m2an/2009030},
     mrnumber = {2542878},
     zbl = {1168.92008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_4_805_0}
}
Simeon, Bernd; Serban, Radu; Petzold, Linda R. A model of macroscale deformation and microvibration in skeletal muscle tissue. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 805-823. doi : 10.1051/m2an/2009030. http://gdmltest.u-ga.fr/item/M2AN_2009__43_4_805_0/

[1] U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA (1998). | MR 1638643 | Zbl 0908.65055

[2] K.E. Brenan, S.L. Campbell and L.R. Petzold, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia, USA (1996). | MR 1363258

[3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991). | MR 1115205 | Zbl 0788.73002

[4] P. Brown, A. Hindmarsh and L.R. Petzold, Using Krylow methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comp. 15 (1994) 1467-1488. | MR 1298625 | Zbl 0812.65060

[5] COMSOL Multiphysics User Manual, Version 3.4 (2007).

[6] M. Cross, J. Rogers, R. Lifshitz and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E 73 (2006) 036205. | MR 2231362

[7] F. Dietrich, Ein Zweiskalenansatz zur Modellierung der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2007).

[8] E. Gallasch and T. Kenner, Characterisation of arm microvibration recorded on an accelometer. Eur. J. Appl. Physiol. 75 (1997) 226-232.

[9] E. Gallasch and M. Moser, Effects of an eight-day space flight on microvibration and physiological tremor. Am. J. Physiol. 273 (1997) R86-R92.

[10] C. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math. 12 (1985) 77-90. | MR 793945 | Zbl 0576.65072

[11] A. Gielen, C. Oomens, P. Bovendeerd and T. Arts, A finite element approach for skeletal muscle using a distributed moment model of contraction. Comp. Meth. Biomech. Biomed. Engng. 3 (2000) 231-244.

[12] A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996). | Zbl 0837.92009

[13] G. Golub and C. Van Loan, Matrix Computations. Third Edition, John Hopkins University Press, Baltimore (1996). | MR 1417720 | Zbl 0865.65009

[14] A.V. Hill, The heat of shortening and the dynamic constants of muscle. P. Roy. Soc. Lond. B Bio. 126 (1938) 136-195.

[15] T.J. Hughes, The Finite Element Method. Prentice Hall, Englewood Cliffs (1987). | MR 1008473 | Zbl 0634.73056

[16] A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957) 255-318.

[17] E. Kuhl, K. Garikipati, E.M. Arruda and K. Grosh, Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Physics Solids 53 (2005) 1552-1573. | MR 2146589 | Zbl 1120.74635

[18] G.T. Line, J. Sundnes and A. Tveito, An operator splitting method for solving the Bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194 (2005) 233-248. | MR 2142490 | Zbl 1063.92018

[19] Ch. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP 44 (1993) 1022-1053. | MR 1247951 | Zbl 0784.70002

[20] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Publications (1994). | MR 1262126

[21] W. Maurel, N.Y. Wu and D. Thalmann, Biomechanical models for soft tissue simulation. Springer (1998).

[22] P. Matthews, R. Mirollo and St. Strogatz, Dynamics of a large system of coupled nonlinear oscillators. Physica D 52 (1991) 293-331. | MR 1128997 | Zbl 0742.34035

[23] U. Randoll, Matrix-Rhythm-Therapy of Dynamic Illnesses, in Extracellular Matrix and Groundregulation System in Health and Disease, H. Heine, M. Rimpler, G. Fischer Eds., Stuttgart-Jena-New York (1997) 57-70.

[24] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195 (2006) 6993-7005. | MR 2258325 | Zbl 1120.74517

[25] www-m2.ma.tum.de/twiki/bin/view/Allgemeines/ProfessorSimeon/movie12.avi.

[26] S. Thiemann, Modellierung und numerische Simulation der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2006).

[27] G.I. Zahalak and I. Motabarzadeh, A re-examination of calcium activation in the Huxley cross-bridge model. J. Biomech. Engng. 119 (1997) 20-29.