In this paper, we consider linear ordinary differential equations originating in electronic engineering, which exhibit exceedingly rapid oscillation. Moreover, the oscillation model is completely different from the familiar framework of asymptotic analysis of highly oscillatory integrals. Using a Bessel-function identity, we expand the oscillator into asymptotic series, and this allows us to extend Filon-type approach to this setting. The outcome is a time-stepping method that guarantees high accuracy regardless of the rate of oscillation.
@article{M2AN_2009__43_4_785_0, author = {Condon, Marissa and Dea\~no, Alfredo and Iserles, Arieh}, title = {On highly oscillatory problems arising in electronic engineering}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {785-804}, doi = {10.1051/m2an/2009024}, mrnumber = {2542877}, zbl = {1172.78009}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_4_785_0} }
Condon, Marissa; Deaño, Alfredo; Iserles, Arieh. On highly oscillatory problems arising in electronic engineering. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 785-804. doi : 10.1051/m2an/2009024. http://gdmltest.u-ga.fr/item/M2AN_2009__43_4_785_0/
[1] Handbook of Mathematical Functions. National Bureau of Standards, Washington, DC, (1964). | MR 167642
and ,[2] Numerical integrators for highly oscillatory Hamiltonian systems: a review, in Analysis, Modeling and Simulation of Multiscale Problems, A. Mielke Ed., Springer-Verlag (2006) 553-576. | MR 2275175
, , and ,[3] An efficient nonlinear circuit simulation technique. IEEE Trans. Microwave Theory Tech. 53 (2005) 548-555.
, and ,[4] Methods of Numerical Integration. Second Edition, Academic Press, Orlando, USA (1984). | MR 760629 | Zbl 0537.65020
and ,[5] Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39 (2006) 5495-5507. | MR 2220772 | Zbl 1093.65078
and ,[6] Communications Systems. Fourth Edition, John Wiley, New York, USA (2001).
,[7] On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44 (2006) 1026-1048. | MR 2231854 | Zbl 1123.65017
and ,[8] On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT 42 (2002a) 561-599. | MR 1931887 | Zbl 1027.65107
,[9] Think globally, act locally: solving highly-oscillatory ordinary differential equations. Appl. Num. Anal. 43 (2002b) 145-160. | MR 1936107 | Zbl 1016.65050
,[10] On quadrature methods for highly oscillatory integrals and their implementation. BIT 44 (2004) 755-772. | MR 2211043 | Zbl 1076.65025
and ,[11] Efficient quadrature of highly oscillatory integrals using derivatives. Proc. Royal Soc. A 461 (2005) 1383-1399. | MR 2147752 | Zbl 1145.65309
and ,[12] From high oscillation to rapid approximation I: Modified Fourier expansions. IMA J. Num. Anal. 28 (2008) 862-887. | MR 2457350 | Zbl pre05377087
and ,[13] Simulation of Communication Systems, Modeling, Methodology and Techniques. Second Edition, Kluwer Academic/Plenum Publishers, New York, USA (2000).
, and ,[14] Quadrature methods for systems of highly oscillatory ODEs. Part I. BIT 48 (2008) 743-761. | MR 2465701 | Zbl 1167.65040
,[15] Quadrature formulæ and Hermite-Birkhoff interpolation. Adv. Maths 11 (1973) 93-112. | MR 318743 | Zbl 0259.41016
and ,[16] Moment-free numerical integration of highly oscillatory functions. IMA J. Num. Anal. 26 (2006) 213-227. | MR 2218631 | Zbl 1106.65021
,[17] Multi-time scale differential equations for simulating frequency modulated signals. Appl. Numer. Math. 53 (2005) 421-436. | MR 2128535 | Zbl 1069.65103
,[18] Analysing circuits with widely separated time scales using numerical PDE methods. IEEE Trans. Circuits Sys. I, Fund. Theory Appl. 48 (2001) 578-594. | MR 1854953 | Zbl 1001.94060
,[19] The Essential Guide to RF and Wireless. Second Edition, Prentice-Hall, Englewood Cliffs, USA (2002).
,[20] Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001). | MR 1851050 | Zbl 1078.41001
,