We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical hamiltonian systems.
@article{M2AN_2009__43_4_645_0, author = {Celledoni, Elena and McLachlan, Robert I. and McLaren, David I. and Owren, Brynjulf and G. Reinout W. Quispel and Wright, William M.}, title = {Energy-preserving Runge-Kutta methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {645-649}, doi = {10.1051/m2an/2009020}, mrnumber = {2542869}, zbl = {1169.65348}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_4_645_0} }
Celledoni, Elena; McLachlan, Robert I.; McLaren, David I.; Owren, Brynjulf; G. Reinout W. Quispel; Wright, William M. Energy-preserving Runge-Kutta methods. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 645-649. doi : 10.1051/m2an/2009020. http://gdmltest.u-ga.fr/item/M2AN_2009__43_4_645_0/
[1] Numerical solution of isospectral flows. Math. Comput. 66 (1997) 1461-1486. | MR 1434938 | Zbl 0907.65067
, and ,[2] Energy-preserving integrators and the structure of B-series. Preprint.
, , and ,[3] An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575-590. | MR 2221062 | Zbl 1100.65115
, and ,[4] Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987) 1-13. | MR 967831 | Zbl 0624.65057
,[5] Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699-709. | MR 2211040 | Zbl 1082.65132
, and ,[6] Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006). | MR 2221614 | Zbl 1094.65125
, and ,[7] Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000) 69-81. | MR 1803182 | Zbl 0969.65069
and ,[8] Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35 (1998) 586-599. | MR 1618858 | Zbl 0912.34015
, and ,[9] Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357 (1999) 1021-1046. | MR 1694701 | Zbl 0933.65143
, and ,[10] A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008) 045206. | MR 2451073 | Zbl 1132.65065
and ,[11] A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002).
,[12] Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12B (1986) 1287-1296. | MR 871366 | Zbl 0641.65057
,