The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic displacement at the rate O() in the discrete and norms where is the interatomic spacing. We also give a proof that the error in the displacement gradient decays away from the interface to O() at distance O() in the atomistic region and distance O() in the continuum region. Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum coupling error in terms of a general underlying interatomic potential and gives the estimates described above in the discrete and norms.
@article{M2AN_2009__43_3_591_0, author = {Dobson, Matthew and Luskin, Mitchell}, title = {An analysis of the effect of ghost force oscillation on quasicontinuum error}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {591-604}, doi = {10.1051/m2an/2009007}, mrnumber = {2536250}, zbl = {1165.81414}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_3_591_0} }
Dobson, Matthew; Luskin, Mitchell. An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 591-604. doi : 10.1051/m2an/2009007. http://gdmltest.u-ga.fr/item/M2AN_2009__43_3_591_0/
[1] Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation. Int. J. Mult. Comp. Eng. 5 (2007) 407-415.
and ,[2] Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model. Multiscale Model. Simul. 7 (2008) 147-170. | MR 2399541 | Zbl 1160.82313
and ,[3] Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model. Comp. Meth. App. Mech. Eng. 197 (2008) 4298-4306. | MR 2463663
and ,[4] On atomistic-to-continuum (AtC) coupling by blending. Multiscale Model. Simul. 7 (2008) 381-406. | MR 2399551 | Zbl 1160.65338
, , , and ,[5] Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797-826. | Numdam | MR 2165680 | Zbl pre02213940
, and ,[6] Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sc. 11 (2003) R33-R68.
and ,[7] Analysis of a force-based quasicontinuum method. ESAIM: M2AN 42 (2008) 113-139. | Numdam | MR 2387424 | Zbl 1140.74006
and ,[8] Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific (2005) 18-32. | MR 2249291 | Zbl pre05050158
and .[9] Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115.
, and ,[10] An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899-1923. | Zbl 1002.74008
and ,[11] Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657-675 (electronic). | MR 1954960 | Zbl 1010.74003
,[12] Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313-332. | MR 2285857 | Zbl pre05246529
,[13] The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203-239.
and ,[14] A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271-284.
, and .[15] Analysis of a one-dimensional nonlocal quasicontinuum method. Preprint. | Zbl 1177.74169
and ,[16] Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359-2389. | MR 2272265 | Zbl 1126.74006
, , and ,[17] A-posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Research Report NA-06/13, Oxford University Computing Laboratory (2006).
and ,[18] Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57-91. | Numdam | MR 2387422 | Zbl 1139.74004
and ,[19] Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362-380. | MR 2399550 | Zbl 1160.65343
, and ,[20] Error control for molecular statics problems. Int. J. Mult. Comp. Eng. 4 (2006) 647-662.
, and ,[21] Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704-1707.
and ,[22] An adaptive finite element approach to atomic-scale mechanics - the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611-642. | MR 1675219 | Zbl 0982.74071
, , , , and ,[23] Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104.
, , and ,[24] Analysis of the Finite Elements Method. Prentice Hall (1973). | MR 443377 | Zbl 0356.65096
and ,[25] Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529-1563.
, and ,