A new Schwarz method for nonlinear systems is presented, constituting the multiplicative variant of a straightforward additive scheme. Local convergence can be guaranteed under suitable assumptions. The scheme is applied to nonlinear acoustic-structure interaction problems. Numerical examples validate the theoretical results. Further improvements are discussed by means of introducing overlapping subdomains and employing an inexact strategy for the local solvers.
@article{M2AN_2009__43_3_487_0, author = {Ernst, Roland and Flemisch, Bernd and Wohlmuth, Barbara}, title = {A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {487-506}, doi = {10.1051/m2an/2009010}, mrnumber = {2536246}, zbl = {1165.74017}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_3_487_0} }
Ernst, Roland; Flemisch, Bernd; Wohlmuth, Barbara. A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 487-506. doi : 10.1051/m2an/2009010. http://gdmltest.u-ga.fr/item/M2AN_2009__43_3_487_0/
[1] On convergence of the additive Schwarz preconditioned inexact Newton method. SIAM J. Numer. Anal. 43 (2005) 1850-1871. | MR 2192321 | Zbl 1111.65046
,[2] Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations. J. Comput. Appl. Math. 152 (2003) 17-34. | MR 1991279 | Zbl 1107.76345
, and ,[3] Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters (Beaune, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 384, Kluwer Acad. Publ., Dordrecht (1993) 269-286. | MR 1222428 | Zbl 0799.65124
, and ,[4] A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XI (Paris, 1989-1991), Pitman Res. Notes Math. Ser. 299, Longman Sci. Tech., Harlow (1994) 13-51. | MR 1268898 | Zbl 0797.65094
, and ,[5] Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183-200. | MR 1924420 | Zbl 1015.65058
and ,[6] Mathematical elasticity, Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). | MR 936420 | Zbl 0648.73014
,[7] On the nonlinear domain decomposition method. BIT 37 (1997) 296-311. | MR 1450962 | Zbl 0891.65126
and ,[8] Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. Int. J. Numer. Meth. Engng. 67 (2006) 1791-1810. | MR 2260629 | Zbl 1127.74042
, and ,[9] Nonlinear Acoustics. Academic Press (1998).
and ,[10] The Finite Element Method. Prentice-Hall, New Jersey (1987). | MR 1008473 | Zbl 0634.73056
,[11] Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin-Heidelberg-New York (2007). | Zbl 1072.78001
.[12] Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Engng. 45 (1999) 569-599. | MR 1687371 | Zbl 0946.74078
and ,[13] Equations of nonlinear acoustics. Soviet Phys.-Acoust. 16 (1971) 467-470.
,[14] A method of computation for structural dynamics. J. Engng. Mech. Div., Proc. ASCE 85 (EM3) (1959) 67-94.
,[15] Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1999). | MR 1857663 | Zbl 0931.65118
and ,[16] Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen. Vorlesung im Sommersemester 2006, IANS preprint 2006/012, Technical report, University of Stuttgart, Germany (2006).
,[17] Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996). | MR 1410757 | Zbl 0857.65126
, and ,[18] Domain decomposition methods - algorithms and theory, Springer Series in Computational Mathematics 34. Springer-Verlag, Berlin (2005). | MR 2104179 | Zbl 1069.65138
and ,