Numerical approaches to rate-independent processes and applications in inelasticity
Mielke, Alexander ; Roubíček, Tomáš
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 399-428 / Harvested from Numdam

A conceptual numerical strategy for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The novelty is that we obtain convergence of subsequences of space-time discretizations even in case where the limit problem does not have a unique solution and we need no additional assumptions on higher regularity of the limit solution. The variety of general perspectives thus obtained is illustrated on several specific examples: plasticity with isotropic hardening, damage, debonding, magnetostriction, and two models of martensitic transformation in shape-memory alloys.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an/2009009
Classification:  35K85,  49J40,  49S05,  65J15,  65M12,  65Z05,  74C05,  74F15,  74H15,  74N10,  74R05,  74S05
@article{M2AN_2009__43_3_399_0,
     author = {Mielke, Alexander and Roub\'\i \v cek, Tom\'a\v s},
     title = {Numerical approaches to rate-independent processes and applications in inelasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {399-428},
     doi = {10.1051/m2an/2009009},
     mrnumber = {2527399},
     zbl = {1166.74010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_3_399_0}
}
Mielke, Alexander; Roubíček, Tomáš. Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 399-428. doi : 10.1051/m2an/2009009. http://gdmltest.u-ga.fr/item/M2AN_2009__43_3_399_0/

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR 751305 | Zbl 0565.49010

[2] J. Alberty and C. Carstensen, Numerical analysis of time-dependent primal elastoplasticity with hardening. SIAM J. Numer. Anal. 37 (2000) 1271-1294. | MR 1756423 | Zbl 1049.74010

[3] M. Arndt, M. Griebel and T. Roubíček, Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn. 15 (2003) 463-485. | MR 2016498 | Zbl 1068.74588

[4] M. Arndt, M. Griebel, V. Novák, T. Roubíček and P. Šittner, Martensitic transformation in NiMnGa single crystals: numerical simulations and experiments. Int. J. Plasticity 22 (2006) 1943-1961. | Zbl 1099.74049

[5] F. Auricchio and L. Petrini, Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int. J. Numer. Meth. Engng. 55 (2002) 1255-1284. | MR 1941116 | Zbl 1062.74580

[6] F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Methods Appl. Sci. 18 (2008) 125-164. | MR 2378086 | Zbl 1151.74319

[7] B. Bourdin, G. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. | MR 1745759 | Zbl 0995.74057

[8] J.G. Boyd and D.C. Lagoudas, A thermodynamical constitutive model for shape memory materials, Part I. The monolithic shape memory alloys. Int. J. Plasticity 12 (1996) 805-842. | Zbl 0898.73020

[9] W.F. Brown, Magnetoelastic interactions, in Springer Tracts in Natural Philosophy 9, C. Truesdel Ed., Springer (1966).

[10] P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermo-mechanical evolution of shape memory alloys. Nonlinear Anal. 18 (1992) 873-888. | MR 1162479 | Zbl 0766.35062

[11] P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys. Quarterly Appl. Math. 48 (1990) 31-47. | MR 1040232 | Zbl 0693.73003

[12] S. Conti and M. Ortiz, Dislocation microstructures and effective behaviour of single crystals. Arch. Ration. Mech. Anal. 176 (2005) 103-147. | MR 2185859 | Zbl 1064.74144

[13] F. Falk, Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall. 28 (1980) 1773-1780.

[14] G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies. J. Reine Angew. Math. 595 (2006) 55-91. | MR 2244798 | Zbl 1101.74015

[15] M. Frémond, Matériaux à mémoire deforme. C.R. Acad. Sci. Paris Sér. II 304 (1987) 239-244.

[16] M. Frémond, Non-Smooth Thermomechanics. Springer, Berlin (2002). | MR 1885252 | Zbl 0990.80001

[17] E. Fried and M.E. Gurtin, Dynamic solid-solid transitions with phase characterized by an order perameter. Physica D 72 (1994) 287-308. | MR 1271571 | Zbl 0812.35164

[18] A. Giacomini and M. Ponsiglione, Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Methods Appl. Sci. 16 (2006) 77-118. | MR 2194982 | Zbl 1092.35111

[19] S. Govindjee and Ch. Miehe, A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comp. Meth. Appl. Mech. Engr. 191 (2001) 215-238. | Zbl 1007.74061

[20] S. Govindjee, A. Mielke and G.J. Hall, Free-energy of miixng for n-variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 50 (2002) 1897-1922. | MR 1915334 | Zbl 1116.74399

[21] B. Halphen and Q.S. Nguyen, Sur les matériaux standards généralisés. J. Mécanique 14 (1975) 39-63. | MR 416177 | Zbl 0308.73017

[22] W. Han and B.D. Reddy, Plasticity. Mathematical theory and numerical analysis. Springer, New York (1999). | MR 1681061 | Zbl 0926.74001

[23] W. Han and B.D. Reddy, Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity. Numer. Math. 87 (2000) 283-315. | MR 1804659 | Zbl 0990.74063

[24] K.-H. Hoffmann, M. Niezgódka and Z. Songmu, Existence and uniqueness of global solutions to an extended model of the dynamical development in shape memory alloys. Nonlinear Anal. Theory Methods Appl. 15 (1990) 977-990. | MR 1081667 | Zbl 0728.35055

[25] J.E. Huber, N.A. Fleck, C.M. Landis and R.M. Mcmeeking, A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47 (1999) 1663-1697. | MR 1686648 | Zbl 0973.74026

[26] R.D. James and D. Kinderlehrer, Theory of magnetostriction with applications to Tb x Dy 1-x Fe 2 . Phil. Mag. 68 (1993) 237-274.

[27] R.D. James and M. Wuttig, Magnetostriction of martensite. Phil. Mag. A 77 (1998) 1273.

[28] Y. Jung, P. Papadopoulos and R.O. Ritchie, Constitutive modeling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int. J. Numer. Meth. Engng. 60 (2004) 429-460. | MR 2054646 | Zbl 1060.74579

[29] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. | MR 1274138 | Zbl 0808.46046

[30] M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423-447. | MR 2245202 | Zbl 1133.74038

[31] M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (2005) 389-418. | MR 2200210 | Zbl 1106.74048

[32] V.I. Levitas, The postulate of realizibility: formulation and applications to postbifurcational behavior and phase transitions in elastoplastic materials. Int. J. Eng. Sci. 33 (1995) 921-971. | MR 1324158 | Zbl 0899.73132

[33] A. Mainik, A rate-independent model for phase transformations in shape-memory alloys. Ph.D. Thesis, Fachbereich Mathematik, Universität Stuttgart, Germany (2004).

[34] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. 22 (2005) 73-99. | MR 2105969 | Zbl 1161.74387

[35] A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strains. J. Nonlinear Science (2008) DOI: 10.1007/s00332-008-9033-y (published online). | MR 2511255 | Zbl 1173.49013

[36] A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodynamics 15 (2003) 351-382. | MR 1999280 | Zbl 1068.74522

[37] A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations: Evolutionary Equations, C. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam (2005) 461-559. | MR 2182832 | Zbl 1120.47062

[38] A. Mielke and S. Müller, Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. Angew. Math. Mech. 86 (2006) 233-250. | MR 2205645 | Zbl 1102.74006

[39] A. Mielke and T. Roubíček, Rate-independent model of inelastic behaviour of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571-597. | MR 2029592 | Zbl pre02060010

[40] A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear inelasticity. Math. Models Methods Appl. Sci. 16 (2006) 177-209. | MR 2210087 | Zbl 1094.35068

[41] A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Models of Continuum Mech. in Anal. and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker Ver., Aachen (1999) 117-129.

[42] A. Mielke and F. Theil, On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11 (2004) 151-189. | MR 2210284 | Zbl 1061.35182

[43] A. Mielke and A. Timofte, An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. Math. Meth. Appl. Sci. 29 (2006) 1393-1410. | MR 2247308 | Zbl 1096.74017

[44] A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137-177. | MR 1897379 | Zbl 1012.74054

[45] A. Mielke, T. Roubíček and U. Stefanelli, Relaxation and Γ-limits for rate-independent evolution equations. Calc. Var. P.D.E. 31 (2008) 387-416. | MR 2366131 | Zbl pre05236593

[46] A. Mielke, L. Paoli and A. Petrov, On the existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys. SIAM J. Math. Anal. (submitted) (WIAS Preprint 1330). | MR 2540271

[47] A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg. (submitted) (WIAS preprint 1285).

[48] S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems, S. Hildebrandt et al. Eds., Lect. Notes in Math. 1713, Springer, Berlin (1999) 85-210. | MR 1731640 | Zbl 0968.74050

[49] P. Pedregal, Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997). | MR 1452107 | Zbl 0879.49017

[50] P. Plecháč and T. Roubíček, Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math. Meth. Appl. Sci. 25 (2002) 1281-1298. | MR 1929476 | Zbl 1012.35051

[51] K.R. Rajagopal and T. Roubíček, On the effect of dissipation in shape-memory alloys. Nonlinear Anal. Real World Appl. 4 (2003) 581-597. | MR 1962289 | Zbl 1023.74036

[52] H. Romanowski and J. Schröder, Modelling of the nonlinear ferroelectric hysteresis within a thermodynamically consistent framework, in Trends in Applications of Math. to Mech., Y. Wang and K. Hutter Eds., Shaker Ver., Aachen (2005) 419-428. | MR 2408850 | Zbl 1084.74020

[53] T. Roubíček, A note on an interaction between penalization and discretization, in Proc. IFIP-IIASA Conf., Modelling and Inverse Problems of Control for Distributed Parameter Systems, A. Kurzhanski and I. Lasiecka Eds., Lect. Notes in Control and Inf. Sci. 154, Springer (1991) 145-150. | MR 1181233 | Zbl 0742.49021

[54] T. Roubíček, Dissipative evolution of microstructure in shape memory alloys, in Lectures on Applied Mathematics, H.-J. Bungartz, R.H.W. Hoppe and C. Zenger Eds., Springer, Berlin (2000) 45-63. | MR 1767763 | Zbl 0993.74048

[55] T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159-182. | MR 2034026 | Zbl 1059.82047

[56] T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening. Z. Angew. Math. Phys. 56 (2005) 107-135. | MR 2112843 | Zbl 1084.82020

[57] T. Roubíček and M. Kružík, Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation, in 3rd GAMM Seminar on microstructures, C. Miehe Ed., GAMM Mitteilungen 29 (2006) 192-214. | MR 2268766 | Zbl 1157.74032

[58] T. Roubíček, M. Kružík and J. Koutný, A mesoscopical model of shape-memory alloys. Proc. Estonian Acad. Sci. Phys. Math. 56 (2007) 146-154. | MR 2333401 | Zbl 1139.74435

[59] P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal. 36 (2005) 2004-2019. | MR 2178230 | Zbl 1086.49014

[60] Y. Shu, K. Bhattacharya, Domain patterns and macroscopic behaviour of ferroelectric materials. Phil. Mag. B 81 (2001) 2021-2054.

[61] J.C. Simo, Numerical analysis and simulation of plasticity, in Handbook of Numer. Anal., P.G. Ciarlet and J.L. Lions Eds., Vol. VI, Elsevier, Amsterdam (1998) 183-499. | MR 1665428 | Zbl 0930.74001

[62] J.C. Simo and J.R. Hughes, Computational Inelasticity. Springer, Berlin (1998). | MR 1642789 | Zbl 0934.74003

[63] R. Temam, Mathematical problems in plasticity. Gauthier-Villars, Paris (1985). | MR 711964

[64] R. Tickle, Ferromagnetic shape memory materials. Ph.D. Thesis, University of Minnesota, Minneapolis, USA (2000).

[65] A. Visintin, Strong convergence results related to strict convexity. Comm. Partial Diff. Eq. 9 (1984) 439-466. | MR 741216 | Zbl 0545.49019

[66] A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism. Physica B 233 (1997) 365-369.

[67] A. Visintin, Maxwell's equations with vector hysteresis. Arch. Ration. Mech. Anal. 175 (2005) 1-37. | MR 2106256 | Zbl 1145.78003

[68] A. Vivet and C. Lexcellent, Micromechanical modelling for tension-compression pseudoelastic behaviour of AuCd single crystals. Eur. Phys. J. Appl. Phys. 4 (1998) 125-132.