A conceptual numerical strategy for rate-independent processes in the energetic formulation is proposed and its convergence is proved under various rather mild data qualifications. The novelty is that we obtain convergence of subsequences of space-time discretizations even in case where the limit problem does not have a unique solution and we need no additional assumptions on higher regularity of the limit solution. The variety of general perspectives thus obtained is illustrated on several specific examples: plasticity with isotropic hardening, damage, debonding, magnetostriction, and two models of martensitic transformation in shape-memory alloys.
@article{M2AN_2009__43_3_399_0, author = {Mielke, Alexander and Roub\'\i \v cek, Tom\'a\v s}, title = {Numerical approaches to rate-independent processes and applications in inelasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {399-428}, doi = {10.1051/m2an/2009009}, mrnumber = {2527399}, zbl = {1166.74010}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_3_399_0} }
Mielke, Alexander; Roubíček, Tomáš. Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 399-428. doi : 10.1051/m2an/2009009. http://gdmltest.u-ga.fr/item/M2AN_2009__43_3_399_0/
[1] Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR 751305 | Zbl 0565.49010
and ,[2] Numerical analysis of time-dependent primal elastoplasticity with hardening. SIAM J. Numer. Anal. 37 (2000) 1271-1294. | MR 1756423 | Zbl 1049.74010
and ,[3] Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn. 15 (2003) 463-485. | MR 2016498 | Zbl 1068.74588
, and ,[4] Martensitic transformation in NiMnGa single crystals: numerical simulations and experiments. Int. J. Plasticity 22 (2006) 1943-1961. | Zbl 1099.74049
, , , and ,[5] Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int. J. Numer. Meth. Engng. 55 (2002) 1255-1284. | MR 1941116 | Zbl 1062.74580
and ,[6] A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Methods Appl. Sci. 18 (2008) 125-164. | MR 2378086 | Zbl 1151.74319
, and ,[7] Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48 (2000) 797-826. | MR 1745759 | Zbl 0995.74057
, and ,[8] A thermodynamical constitutive model for shape memory materials, Part I. The monolithic shape memory alloys. Int. J. Plasticity 12 (1996) 805-842. | Zbl 0898.73020
and ,[9] Magnetoelastic interactions, in Springer Tracts in Natural Philosophy 9, C. Truesdel Ed., Springer (1966).
,[10] Global existence for a three-dimensional model for the thermo-mechanical evolution of shape memory alloys. Nonlinear Anal. 18 (1992) 873-888. | MR 1162479 | Zbl 0766.35062
and ,[11] Thermo-mechanical evolution of shape memory alloys. Quarterly Appl. Math. 48 (1990) 31-47. | MR 1040232 | Zbl 0693.73003
, and ,[12] Dislocation microstructures and effective behaviour of single crystals. Arch. Ration. Mech. Anal. 176 (2005) 103-147. | MR 2185859 | Zbl 1064.74144
and ,[13] Model free energy, mechanics and thermodynamics of shape memory alloys. Acta Metall. 28 (1980) 1773-1780.
,[14] An existence result for a rate-independent material model in the case of nonconvex energies. J. Reine Angew. Math. 595 (2006) 55-91. | MR 2244798 | Zbl 1101.74015
and ,[15] Matériaux à mémoire deforme. C.R. Acad. Sci. Paris Sér. II 304 (1987) 239-244.
,[16] Non-Smooth Thermomechanics. Springer, Berlin (2002). | MR 1885252 | Zbl 0990.80001
,[17] Dynamic solid-solid transitions with phase characterized by an order perameter. Physica D 72 (1994) 287-308. | MR 1271571 | Zbl 0812.35164
and ,[18] Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Methods Appl. Sci. 16 (2006) 77-118. | MR 2194982 | Zbl 1092.35111
and ,[19] A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comp. Meth. Appl. Mech. Engr. 191 (2001) 215-238. | Zbl 1007.74061
and ,[20] Free-energy of miixng for -variant martensitic phase transformations using quasi-convex analysis. J. Mech. Phys. Solids 50 (2002) 1897-1922. | MR 1915334 | Zbl 1116.74399
, and ,[21] Sur les matériaux standards généralisés. J. Mécanique 14 (1975) 39-63. | MR 416177 | Zbl 0308.73017
and ,[22] Plasticity. Mathematical theory and numerical analysis. Springer, New York (1999). | MR 1681061 | Zbl 0926.74001
and ,[23] Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity. Numer. Math. 87 (2000) 283-315. | MR 1804659 | Zbl 0990.74063
and ,[24] Existence and uniqueness of global solutions to an extended model of the dynamical development in shape memory alloys. Nonlinear Anal. Theory Methods Appl. 15 (1990) 977-990. | MR 1081667 | Zbl 0728.35055
, and ,[25] A constitutive model for ferroelectric polycrystals. J. Mech. Phys. Solids 47 (1999) 1663-1697. | MR 1686648 | Zbl 0973.74026
, , and ,[26] Theory of magnetostriction with applications to TbDyFe. Phil. Mag. 68 (1993) 237-274.
and ,[27] Magnetostriction of martensite. Phil. Mag. A 77 (1998) 1273.
and ,[28] Constitutive modeling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. Int. J. Numer. Meth. Engng. 60 (2004) 429-460. | MR 2054646 | Zbl 1060.74579
, and ,[29] Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4 (1994) 59-90. | MR 1274138 | Zbl 0808.46046
and ,[30] A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423-447. | MR 2245202 | Zbl 1133.74038
, and ,[31] Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40 (2005) 389-418. | MR 2200210 | Zbl 1106.74048
, and ,[32] The postulate of realizibility: formulation and applications to postbifurcational behavior and phase transitions in elastoplastic materials. Int. J. Eng. Sci. 33 (1995) 921-971. | MR 1324158 | Zbl 0899.73132
,[33] A rate-independent model for phase transformations in shape-memory alloys. Ph.D. Thesis, Fachbereich Mathematik, Universität Stuttgart, Germany (2004).
,[34] Existence results for energetic models for rate-independent systems. Calc. Var. 22 (2005) 73-99. | MR 2105969 | Zbl 1161.74387
and ,[35] Global existence for rate-independent gradient plasticity at finite strains. J. Nonlinear Science (2008) DOI: 10.1007/s00332-008-9033-y (published online). | MR 2511255 | Zbl 1173.49013
and ,[36] Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Cont. Mech. Thermodynamics 15 (2003) 351-382. | MR 1999280 | Zbl 1068.74522
,[37] Evolution of rate-independent systems, in Handbook of Differential Equations: Evolutionary Equations, C. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam (2005) 461-559. | MR 2182832 | Zbl 1120.47062
,[38] Lower semicontinuity and existence of minimizers for a functional in elastoplasticity. Z. Angew. Math. Mech. 86 (2006) 233-250. | MR 2205645 | Zbl 1102.74006
and ,[39] Rate-independent model of inelastic behaviour of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571-597. | MR 2029592 | Zbl pre02060010
and ,[40] Rate-independent damage processes in nonlinear inelasticity. Math. Models Methods Appl. Sci. 16 (2006) 177-209. | MR 2210087 | Zbl 1094.35068
and ,[41] A mathematical model for rate-independent phase transformations with hysteresis, in Models of Continuum Mech. in Anal. and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker Ver., Aachen (1999) 117-129.
and ,[42] On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11 (2004) 151-189. | MR 2210284 | Zbl 1061.35182
and ,[43] An energetic material model for time-dependent ferroelectric behavior: existence and uniqueness. Math. Meth. Appl. Sci. 29 (2006) 1393-1410. | MR 2247308 | Zbl 1096.74017
and ,[44] A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137-177. | MR 1897379 | Zbl 1012.74054
, and ,[45] Relaxation and -limits for rate-independent evolution equations. Calc. Var. P.D.E. 31 (2008) 387-416. | MR 2366131 | Zbl pre05236593
, and ,[46] On the existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys. SIAM J. Math. Anal. (submitted) (WIAS Preprint 1330). | MR 2540271
, and ,[47] Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg. (submitted) (WIAS preprint 1285).
, and ,[48] Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution problems, S. Hildebrandt et al. Eds., Lect. Notes in Math. 1713, Springer, Berlin (1999) 85-210. | MR 1731640 | Zbl 0968.74050
,[49] Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997). | MR 1452107 | Zbl 0879.49017
,[50] Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math. Meth. Appl. Sci. 25 (2002) 1281-1298. | MR 1929476 | Zbl 1012.35051
and ,[51] On the effect of dissipation in shape-memory alloys. Nonlinear Anal. Real World Appl. 4 (2003) 581-597. | MR 1962289 | Zbl 1023.74036
and ,[52] Modelling of the nonlinear ferroelectric hysteresis within a thermodynamically consistent framework, in Trends in Applications of Math. to Mech., Y. Wang and K. Hutter Eds., Shaker Ver., Aachen (2005) 419-428. | MR 2408850 | Zbl 1084.74020
and ,[53] A note on an interaction between penalization and discretization, in Proc. IFIP-IIASA Conf., Modelling and Inverse Problems of Control for Distributed Parameter Systems, A. Kurzhanski and I. Lasiecka Eds., Lect. Notes in Control and Inf. Sci. 154, Springer (1991) 145-150. | MR 1181233 | Zbl 0742.49021
,[54] Dissipative evolution of microstructure in shape memory alloys, in Lectures on Applied Mathematics, H.-J. Bungartz, R.H.W. Hoppe and C. Zenger Eds., Springer, Berlin (2000) 45-63. | MR 1767763 | Zbl 0993.74048
,[55] Microstructure evolution model in micromagnetics. Z. Angew. Math. Phys. 55 (2004) 159-182. | MR 2034026 | Zbl 1059.82047
and ,[56] Mesoscopic model for ferromagnets with isotropic hardening. Z. Angew. Math. Phys. 56 (2005) 107-135. | MR 2112843 | Zbl 1084.82020
and ,[57] Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation, in 3rd GAMM Seminar on microstructures, C. Miehe Ed., GAMM Mitteilungen 29 (2006) 192-214. | MR 2268766 | Zbl 1157.74032
and ,[58] A mesoscopical model of shape-memory alloys. Proc. Estonian Acad. Sci. Phys. Math. 56 (2007) 146-154. | MR 2333401 | Zbl 1139.74435
, and ,[59] Existence of energy minimizers for magnetostrictive materials. SIAM J. Math. Anal. 36 (2005) 2004-2019. | MR 2178230 | Zbl 1086.49014
and ,[60] Domain patterns and macroscopic behaviour of ferroelectric materials. Phil. Mag. B 81 (2001) 2021-2054.
, ,[61] Numerical analysis and simulation of plasticity, in Handbook of Numer. Anal., P.G. Ciarlet and J.L. Lions Eds., Vol. VI, Elsevier, Amsterdam (1998) 183-499. | MR 1665428 | Zbl 0930.74001
,[62] Computational Inelasticity. Springer, Berlin (1998). | MR 1642789 | Zbl 0934.74003
and ,[63] Mathematical problems in plasticity. Gauthier-Villars, Paris (1985). | MR 711964
,[64] Ferromagnetic shape memory materials. Ph.D. Thesis, University of Minnesota, Minneapolis, USA (2000).
,[65] Strong convergence results related to strict convexity. Comm. Partial Diff. Eq. 9 (1984) 439-466. | MR 741216 | Zbl 0545.49019
,[66] Modified Landau-Lifshitz equation for ferromagnetism. Physica B 233 (1997) 365-369.
,[67] Maxwell's equations with vector hysteresis. Arch. Ration. Mech. Anal. 175 (2005) 1-37. | MR 2106256 | Zbl 1145.78003
,[68] Micromechanical modelling for tension-compression pseudoelastic behaviour of AuCd single crystals. Eur. Phys. J. Appl. Phys. 4 (1998) 125-132.
and ,