We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent norm are derived.
@article{M2AN_2009__43_2_277_0, author = {Brezzi, Franco and Buffa, Annalisa and Lipnikov, Konstantin}, title = {Mimetic finite differences for elliptic problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {277-295}, doi = {10.1051/m2an:2008046}, mrnumber = {2512497}, zbl = {1177.65164}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_2_277_0} }
Brezzi, Franco; Buffa, Annalisa; Lipnikov, Konstantin. Mimetic finite differences for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 277-295. doi : 10.1051/m2an:2008046. http://gdmltest.u-ga.fr/item/M2AN_2009__43_2_277_0/
[1] Principles of mimetic discretizations of differential operators, IMA Hot Topics Workshop on Compatible Spatial Discretizations 142, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., Springer-Verlag (2006). | MR 2249347 | Zbl 1110.65103
and ,[2] The mathematical theory of finite element methods. Springer-Verlag, Berlin/Heidelberg (1994). | MR 1278258 | Zbl 0804.65101
and ,[3] General framework for cochain approximations of differential forms. Technical report, Instituto di Mathematica Applicata a Technologie Informatiche (in preparation).
and ,[4] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872-1896. | MR 2192322 | Zbl 1108.65102
, and ,[5] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 15 (2005) 1533-1552. | MR 2168945 | Zbl 1083.65099
, and ,[6] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meth. Appl. Sci. 16 (2006) 275-297. | MR 2210091 | Zbl 1094.65111
, and ,[7] A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3692-3692. | MR 2339994 | Zbl 1173.76370
, , and ,[8] A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739-765. | MR 1857619 | Zbl 1002.76082
and ,[9] The finite element method for elliptic problems. North-Holland, New York (1978). | MR 520174 | Zbl 0383.65058
,[10] Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Springer-Verlag, Berlin, New York (1988). | MR 961439 | Zbl 0668.35001
,[11] New element lops time off CFD simulations. Mashine Design 78 (2006) 154-155.
,[12] A family of -conforming finite element spaces for calculations on 3D grids with pinch-outs. Numer. Linear Algebra Appl. 13 (2006) 789-799. | MR 2266105 | Zbl 1174.65523
, and ,[13] A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Engrg. 187 (2000) 365-383. | MR 1772742 | Zbl 0978.76063
, and ,[14] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes Eds., Springer-Verlag, Berlin-Heilderberg-New York (1977) 292-315. | MR 483555 | Zbl 0362.65089
and ,