Semi-smooth Newton methods for elliptic equations with gradient constraints are investigated. The one- and multi-dimensional cases are treated separately. Numerical examples illustrate the approach and as well as structural features of the solution.
@article{M2AN_2009__43_2_209_0, author = {Griesse, Roland and Kunisch, Karl}, title = {A semi-smooth Newton method for solving elliptic equations with gradient constraints}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {209-238}, doi = {10.1051/m2an:2008049}, mrnumber = {2512495}, zbl = {1161.65338}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_2_209_0} }
Griesse, Roland; Kunisch, Karl. A semi-smooth Newton method for solving elliptic equations with gradient constraints. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 209-238. doi : 10.1051/m2an:2008049. http://gdmltest.u-ga.fr/item/M2AN_2009__43_2_209_0/
[1] Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265 (1967) 333-336. | MR 223711 | Zbl 0164.16803
,[2] Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 99-259. | MR 679322 | Zbl 0497.76041
and ,[3] Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math. 80 (1997) 105-126. | MR 1455748 | Zbl 0881.65042
,[4] Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001). | MR 1855817 | Zbl 1002.49029
and ,[5] A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 4 (1979) 555-572. | MR 529814 | Zbl 0448.35036
,[6] Elliptic Differential Equations of Second Order. Springer, New York (1977). | MR 473443 | Zbl 0361.35003
and ,[7] Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear). | MR 2546337
and ,[8] The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865-888. | MR 1972219 | Zbl 1080.90074
, and ,[9] Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 8 (1983) 317-346. | MR 693645 | Zbl 0538.35012
and ,[10] The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt. 43 (2004) 357-376. | MR 2082706 | Zbl 1077.90051
and ,[11] Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). | MR 925005 | Zbl 0628.65098
,[12] Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563-568. | Zbl 1209.91149
and ,[13] Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968). | Zbl 0164.13002
and ,[14] Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994) 609-692. | MR 1284980 | Zbl 0813.60051
and ,[15] Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981). | MR 604364 | Zbl 0454.26001
,[16] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | MR 1094820 | Zbl 0655.35002
,[17] The -character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ. 6 (1981) 361-371. | MR 607553 | Zbl 0458.35035
,