From the fundamental laws of elasticity, we write a model for the contact between two membranes and we perform the analysis of the corresponding system of variational inequalities. We propose a finite element discretization of this problem and prove its well-posedness. We also establish a priori and a posteriori error estimates.
@article{M2AN_2009__43_1_33_0,
author = {Belgacem, Faker Ben and Bernardi, Christine and Blouza, Adel and Vohral\'\i k, Martin},
title = {A finite element discretization of the contact between two membranes},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {43},
year = {2009},
pages = {33-52},
doi = {10.1051/m2an/2008041},
mrnumber = {2494793},
zbl = {1157.74036},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2009__43_1_33_0}
}
Belgacem, Faker Ben; Bernardi, Christine; Blouza, Adel; Vohralík, Martin. A finite element discretization of the contact between two membranes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 33-52. doi : 10.1051/m2an/2008041. http://gdmltest.u-ga.fr/item/M2AN_2009__43_1_33_0/
[1] , and , Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23-33. | MR 1193438 | Zbl 0768.65032
[2] and , Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27-61. | MR 1199063 | Zbl 0817.35035
[3] , and , Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004). | MR 2068204 | Zbl 1063.65119
[4] and , Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153-180. | Numdam | MR 239302 | Zbl 0165.45601
[5] , and , Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1-16. | MR 508584 | Zbl 0427.65077
[6] and , Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR 1742264 | Zbl 0943.65075
[7] , The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
[8] , Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. | MR 1115237 | Zbl 0875.65086
[9] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008
[10] and , Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974). | MR 463993 | Zbl 0281.49001
[11] and , Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR 851383 | Zbl 0585.65077
[12] , Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR 775683 | Zbl 0695.35060
[13] , and , Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313-485. | MR 1422506 | Zbl 0873.73079
[14] and , Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897-923. | Numdam | MR 2363888 | Zbl 1140.74024
[15] and , Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493-519. | MR 216344 | Zbl 0152.34601
[16] , and , Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | MR 1993943 | Zbl 1027.65089
[17] , Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791-A794. | MR 497667 | Zbl 0377.65058
[18] , and , Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177-201. | Numdam | MR 2073936 | Zbl 1100.65059
[19] , A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl 0853.65108
[20] , An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25-45. | MR 2338331 | Zbl 1127.74047