In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large are large nonlinear exponents . In a second part, we compute solitons for a nonlinear system governing the propagation of two coupled waves in a quadratic media in any spatial dimension, starting from one-dimensional states obtained with a shooting method and considering the dimension as a continuation parameter. Finally, we investigate the case of three wave mixing, for which the shooting method is not relevant.
@article{M2AN_2009__43_1_173_0, author = {Menza, Laurent Di}, title = {Numerical computation of solitons for optical systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {43}, year = {2009}, pages = {173-208}, doi = {10.1051/m2an:2008044}, mrnumber = {2494799}, zbl = {1159.65070}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2009__43_1_173_0} }
Menza, Laurent Di. Numerical computation of solitons for optical systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 173-208. doi : 10.1051/m2an:2008044. http://gdmltest.u-ga.fr/item/M2AN_2009__43_1_173_0/
[1] Nodal solutions for a sublinear elliptic equation. Nonlinear Anal. 52 (2003) 219-237. | MR 1938658 | Zbl 1087.35033
, and ,[2] Self-trapping of light beams and parametric solitons in diffractive quadratic media. Phys. Rev. A 52 (1995) 1670-1674.
, and ,[3] Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370 (2002) 62-235. | MR 1989309 | Zbl 0998.78009
, , and ,[4] Transparent and absorbing conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim. 18 (1997) 759-775. | MR 1472153 | Zbl 0895.65041
,[5] Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Physica D 18 (2007) 55-86. | MR 2370365 | Zbl 1118.35043
, and ,[6] Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79 (1997) 2450-2453.
and ,[7] Simultaneous solitary-wave solutions in a nonlinear parametric waveguide. Phys. Rev. E 54 (1996) 896-911.
, and ,[8] Nonradial solutions of a semilinear elliptic equation in two dimensions. J. Diff. Equ. 119 (1995) 533-558. | MR 1340550 | Zbl 0832.35040
and ,[9] Norm estimates for radially symmetric solutions of semilinear elliptic equations. Trans. Amer. Math. Soc. 347 (1995) 1163-1199. | MR 1290720 | Zbl 0833.35039
,[10] Uniqueness of positive solutions of in . Arch. Rat. Mech. Anal. 105 (1989) 243-266. | MR 969899 | Zbl 0676.35032
,[11] Efficient numerical continuation and stability analysis of spatiotemporal quadratic optical solitons. SIAM J. Sci. Comput. 27 (2005) 759-773. | MR 2199906 | Zbl 1096.78006
and ,[12] Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56 (1997) 4725-4735.
, , , , and ,[13] Radial solutions of with prescribed number of zeros. J. Diff. Equ. 83 (1990) 368-378. | MR 1033193 | Zbl 0695.34020
, and ,[14] Vortex solitons for 2D focusing nonlinear Schrödinger equation. Diff. Int. Equ. 18 (2005) 431-450. | MR 2122708
,[15] Spherically-symmetric solutions of the Schrödinger-Newton equation. Class. Quant. Grav. 15 (1998) 2733-2742. | MR 1649671 | Zbl 0936.83037
, and ,[16] Self-guided beams in diffractive medium: variational approach. Optics Comm. 118 (1995) 345-352.
, , and ,[17] The nonlinear Schrödinger equation, Self-focusing and wave collapse. AMS, Springer-Verlag (1999). | MR 1696311 | Zbl 0928.35157
and ,[18] Light bullets in quadratic media with normal dispersion at the second harmonic. Phys. Rev. Lett. 90 (2003) 123902.
, and ,[19] Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576. | MR 691044 | Zbl 0527.35023
,