Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
Bisi, Marzia ; Desvillettes, Laurent ; Spiga, Giampiero
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009), p. 151-172 / Harvested from Numdam

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/m2an:2008045
Classification:  35B40,  35B50,  35K57,  80A30,  92E20
@article{M2AN_2009__43_1_151_0,
     author = {Bisi, Marzia and Desvillettes, Laurent and Spiga, Giampiero},
     title = {Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {43},
     year = {2009},
     pages = {151-172},
     doi = {10.1051/m2an:2008045},
     mrnumber = {2494798},
     zbl = {1155.35312},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2009__43_1_151_0}
}
Bisi, Marzia; Desvillettes, Laurent; Spiga, Giampiero. Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 43 (2009) pp. 151-172. doi : 10.1051/m2an:2008045. http://gdmltest.u-ga.fr/item/M2AN_2009__43_1_151_0/

[1] A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P.A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35-43. | MR 2065020 | Zbl 1063.35109

[2] M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881-912. | MR 2264629 | Zbl 1134.82323

[3] M. Bisi and G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779-798. | MR 2264820 | Zbl 1120.82011

[4] M. Bisi and G. Spiga, Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). | MR 2264820

[5] M. Cáceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161-1175. | MR 2110436 | Zbl 1077.35028

[6] J.A. Carrillo and G. Toscani, Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113-142. | MR 1777035 | Zbl 0963.35098

[7] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847-875. | MR 1940370 | Zbl 1112.35310

[8] L. Desvillettes, About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma 7 (2007) 81-123. | MR 2375204 | Zbl 1171.35409

[9] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157-176. | MR 2217853 | Zbl 1096.35018

[10] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304-312. | MR 2409225 | Zbl 1163.35322

[11] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). | MR 2459198 | Zbl 1171.35330

[12] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials 25 (2000) 261-298. | MR 1737548 | Zbl 0951.35130

[13] V. Giovangigli, Multicomponent Flow Modeling1999). | MR 1713516 | Zbl 0956.76003

[14] M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819-8833. | MR 1801471 | Zbl 0970.82041

[15] M. Kirane, On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369-377. | MR 1104954 | Zbl 0731.35056

[16] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968). | Zbl 0174.15403

[17] K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360-370. | MR 719974 | Zbl 0529.35037

[18] J.A. Mclennan, Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887-905.

[19] Y. Sone, Kinetic Theory and Fluid Dynamics2002). | MR 1919070 | Zbl 1021.76002

[20] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667-706. | MR 1700142 | Zbl 0944.35066

[21] Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501-517.