Interface tracking method for compressible multifluids
Chertock, Alina ; Karni, Smadar ; Kurganov, Alexander
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008), p. 991-1019 / Harvested from Numdam

This paper is concerned with numerical methods for compressible multicomponent fluids. The fluid components are assumed immiscible, and are separated by material interfaces, each endowed with its own equation of state (EOS). Cell averages of computational cells that are occupied by several fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and often leads to spurious oscillations. We present a new interface tracking algorithm, which avoids using mixed-cell information by solving the Riemann problem between its single-fluid neighboring cells. The resulting algorithm is oscillation-free for isolated material interfaces, conservative, and tends to produce almost perfect jumps across material fronts. The computational framework is general and may be used in conjunction with one's favorite finite-volume method. The robustness of the method is illustrated on shock-interface interaction in one space dimension, oscillating bubbles with radial symmetry and shock-bubble interaction in two space dimensions.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/m2an:2008036
Classification:  76M12,  76N15,  35L65,  35L67
@article{M2AN_2008__42_6_991_0,
     author = {Chertock, Alina and Karni, Smadar and Kurganov, Alexander},
     title = {Interface tracking method for compressible multifluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {42},
     year = {2008},
     pages = {991-1019},
     doi = {10.1051/m2an:2008036},
     mrnumber = {2473317},
     zbl = {pre05370464},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2008__42_6_991_0}
}
Chertock, Alina; Karni, Smadar; Kurganov, Alexander. Interface tracking method for compressible multifluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 991-1019. doi : 10.1051/m2an:2008036. http://gdmltest.u-ga.fr/item/M2AN_2008__42_6_991_0/

[1] R. Abgrall, Generalization of the Roe scheme for the computation of mixture of perfect gases. Rech. Aérosp. 6 (1988) 31-43. | Zbl 0662.76097

[2] R. Abgrall, How to prevent pressure oscillations in multicomponent flows: A quasi conservative approach. J. Comp. Phys. 125 (1996) 150-160. | MR 1381808 | Zbl 0847.76060

[3] R. Abgrall and S. Karni, Ghost-fluids for the poor: a single fluid algorithm for multifluids, in Hyperbolic problems: theory, numerics, applications, Vols. I, II (Magdeburg, 2000), Birkhäuser, Basel, Internat. Ser. Numer. Math. 140 (2001) 1-10. | MR 1882900

[4] R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comp. Phys. 169 (2001) 594-623. | MR 1836526 | Zbl 1033.76029

[5] R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comp. Phys. 186 (2003) 361-396. | MR 1973195 | Zbl 1072.76594

[6] R. Abgrall, B. N'Konga and R. Saurel, Efficient numerical approximation of compressible multi-material flow for unstructured meshes. Comput. Fluids 4 (2003) 571-605. | MR 1966640 | Zbl 1084.76543

[7] I.-L. Chern, J. Glimm, O. Mcbryan, B. Plohr and S. Yaniv, Front tracking for gas dynamics. J. Comp. Phys. 62 (1986) 83-110. | MR 825892 | Zbl 0577.76068

[8] A. Chertock and A. Kurganov, Conservative locally moving mesh method for multifluid flows. Proceedings of the Fourth International Symposium on Finite Volumes for Complex Applications, Marrakech (2005) 273-284. | MR 1500025

[9] F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comp. Phys. 136 (1997) 272-288. | MR 1474408 | Zbl 0893.76052

[10] S.F. Davis, An interface tracking method for hyperbolic systems of conservation laws. Appl. Numer. Math. 10 (1992) 447-472. | MR 1192634 | Zbl 0766.65067

[11] R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comp. Phys. 152 (1999) 457-492. | MR 1699710 | Zbl 0957.76052

[12] J. Glimm, J.W. Grove, X.L. Li, K.-M. Shyue, Y. Zeng and Q. Zhang, Three-dimensional front tracking. SIAM J. Sci. Comput. 19 (1998) 703-727. | MR 1616658 | Zbl 0912.65075

[13] J. Glimm, X.L. Li, Y. Liu and N. Zhao, Conservative front tracking and level set algorithms. Proc. Natl. Acad. Sci. USA 98 (2001) 14198-14201. | MR 1867514 | Zbl 1005.65091

[14] J. Glimm, Y. Liu, Z. Xu and N. Zhao, Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41 (2003) 1926-1947. | MR 2035012 | Zbl 1053.35093

[15] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Springer-Verlag, New York (1996). | MR 1410987 | Zbl 0860.65075

[16] E. Godlewski and P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. I. The scalar case. Numer. Math. 97 (2004) 81-130. | MR 2045460 | Zbl 1063.65080

[17] E. Godlewski, K.-C. Le Thanh, P.-A. Raviart, The numerical interface coupling of nonlinear hyperbolic systems of conservation laws. II. The case of systems. ESAIM: M2AN 39 (2005) 649-692. | Numdam | MR 2165674 | Zbl 1095.65084

[18] S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89-112. | MR 1854647 | Zbl 0967.65098

[19] J.-F. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181 (1987) 313-336.

[20] A. Harten and J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comp. Phys. 50 (1983) 235-269. | MR 707200 | Zbl 0565.65049

[21] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes, I. SIAM J. Numer. Anal. 24 (1987) 279-309. | MR 881365 | Zbl 0627.65102

[22] A. Harten, S. Osher, B. Engquist and S.R. Chakravarthy, Some results on uniformly high order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2 (1986) 347-377. | MR 863993 | Zbl 0627.65101

[23] P. Jenny, B. Mueller and H. Thomann, Correction of conservative Euler solvers for gas mixtures. J. Comp. Phys. 132 (1997) 91-107. | MR 1440335 | Zbl 0879.76059

[24] S. Karni, Multicomponent flow calculations by a consistent primitive algorithm. J. Comp. Phys. 112 (1994) 31-43. | MR 1277497 | Zbl 0811.76044

[25] S. Karni, Compressible bubbles with surface tension, in Sixteenth International Conference on Numerical Methods in Fluid Dynamics (Arcachon, 1998), Springer, Berlin, Lecture Notes in Physics 515 (1998) 506-511. | MR 1730427

[26] S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477-493. | Numdam | MR 2075756 | Zbl 1079.76045

[27] D. Kröner, Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). | MR 1437144 | Zbl 0872.76001

[28] A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141-163. | MR 2305919 | Zbl pre05371717

[29] A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160 (2000) 241-282. | MR 1756766 | Zbl 0987.65085

[30] A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2001) 707-740. | MR 1860961 | Zbl 0998.65091

[31] B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comp. Phys. 95 (1991) 59-84. | MR 1112315 | Zbl 0725.76090

[32] R. Leveque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics. Cambridge University Press (2002). | MR 1925043 | Zbl 1010.65040

[33] K.-A. Lie and S. Noelle, On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157-1174. | MR 1976211 | Zbl 1038.65078

[34] W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comp. Phys. 100 (1992) 209-228. | MR 1167743 | Zbl 0758.76044

[35] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87 (1990) 408-463. | MR 1047564 | Zbl 0697.65068

[36] J.J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318 (1996) 129-163. | Zbl 0877.76046

[37] P.L. Roe, Fluctuations and signals - a framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, Academic Press, New York (1982) 219-257. | Zbl 0569.76072

[38] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comp. Phys. 150 (1999) 425-467. | MR 1684902 | Zbl 0937.76053

[39] K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comp. Phys. 142 (1998) 208-242. | MR 1618088 | Zbl 0934.76062

[40] K.-M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comp. Phys. 156 (1999) 43-88. | MR 1727633 | Zbl 0957.76039

[41] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. | MR 760628 | Zbl 0565.65048

[42] V. Ton, Improved shock-capturing methods for multicomponent and reacting flows. J. Comp. Phys. 128 (1996) 237-253. | MR 1412056 | Zbl 0860.76060

[43] E.F. Toro, Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Second edition, Springer-Verlag, Berlin (1999). | MR 1717819 | Zbl 0801.76062

[44] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, A front-tracking method for the computations of multiphase flow. J. Comp. Phys. 169 (2001) 708-759. | Zbl 1047.76574

[45] B. Van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comp. Phys. 32 (1979) 101-136. | MR 1703646 | Zbl 0939.76063

[46] J. Wackers and B. Koren, Five-equation model for compressible two-fluid flow. Report MAS-E0414, CWI, Amsterdam (2004). Available at http://ftp.cwi.nl/CWIreports/MAS/MAS-E0414.pdf

[47] S.-P. Wang, M.H. Anderson, J.G. Oakley, M.L. Corradini and R. Bonazza, A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows. J. Comp. Phys. 195 (2004) 528-559. | MR 2046109 | Zbl 1115.76377

[48] A. Wardlaw, Underwater explosion test cases. IHTR 2069 (1998).