A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes
Braack, Malte
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008), p. 903-924 / Harvested from Numdam

It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior than other isotropic stabilization methods. The capability of the method is illustrated by means of two numerical test problems.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/m2an:2008032
Classification:  35Q30,  65N30,  76D05
@article{M2AN_2008__42_6_903_0,
     author = {Braack, Malte},
     title = {A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {42},
     year = {2008},
     pages = {903-924},
     doi = {10.1051/m2an:2008032},
     mrnumber = {2473313},
     zbl = {1149.76026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2008__42_6_903_0}
}
Braack, Malte. A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 903-924. doi : 10.1051/m2an:2008032. http://gdmltest.u-ga.fr/item/M2AN_2008__42_6_903_0/

[1] T. Apel, Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). | MR 1716824 | Zbl 0934.65121

[2] R. Becker, An adaptive finite element method for the incompressible Navier-Stokes equation on time-dependent domains. Ph.D. Dissertation, SFB-359 Preprint 95-44, Universität Heidelberg, Germany (1995). | Zbl 0847.76028

[3] R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173-199. | MR 1890352 | Zbl 1008.76036

[4] R. Becker and M. Braack, A two-level stabilization scheme for the Navier-Stokes equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2003, E.A.M. Feistauer Ed., Springer (2004) 123-130. | MR 2121360 | Zbl pre02110685

[5] R. Becker, M. Braack and B. Vexler, Numerical parameter estimaton for chemical models in multidimensional reactive flows. Combust. Theory Model. 8 (2004) 661-682. | MR 2106598 | Zbl 1068.80533

[6] R. Becker, M. Braack and B. Vexler, Parameter identification for chemical models in combustion problems. Appl. Numer. Math. 54 (2005) 519-536. | MR 2149367 | Zbl 1066.80006

[7] M. Braack, Anisotropic H 1 -stable projections on quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 495-503. | MR 2303677 | Zbl 1119.65405

[8] M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544-2566. | MR 2206447 | Zbl 1109.35086

[9] M. Braack and T. Richter, Local projection stabilization for the Stokes system on anisotropic quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 770-778. | MR 2303707 | Zbl pre05165558

[10] M. Braack and T. Richter, Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (2006) 372-392. | Zbl 1160.76364

[11] M. Braack and T. Richter, Stabilized finite elements for 3D reactive flow. Int. J. Numer. Methods Fluids 51 (2006) 981-999. | MR 2242376 | Zbl 1158.80326

[12] M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853-866. | MR 2278180 | Zbl 1120.76322

[13] A. Brooks and T. Hughes, Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259. | MR 679322 | Zbl 0497.76041

[14] E. Burman, M. Fernandez and P. Hansbo, Edge stabilization for the incompressible Navier-Stokes equations: a continuous interior penalty finite element method. SIAM J. Numer. Anal. 44 (2006) 1248-1274. | MR 2231863 | Zbl pre05167773

[15] P. Ciarlet, Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl 0999.65129

[16] R. Codina, Stabilization of incompressibility and convection through orthogonal subscales in finite element methods. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1579-1599. | MR 1807473 | Zbl 0998.76047

[17] R. Codina and O. Soto, Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1403-1419. | MR 2068901 | Zbl 1079.76579

[18] L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems. Numer. Math. 94 (2003) 67-92. | MR 1971213 | Zbl 1031.65123

[19] L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511-533. | MR 2101976 | Zbl 1107.65098

[20] L. Franca and S. Frey, Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233. | MR 1186727 | Zbl 0765.76048

[21] J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 1293-1316. | Numdam | MR 1736900 | Zbl 0946.65112

[22] P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 84 (1990) 175-192. | MR 1087615 | Zbl 0716.76048

[23] T. Hughes, L. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumvent the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 89-99. | MR 868143 | Zbl 0622.76077

[24] V. John and S. Kaya, A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comp. 26 (2005) 1485-1503. | MR 2142582 | Zbl 1073.76054

[25] V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 26 (2005) 4594-4603. | MR 2229851 | Zbl 1124.76028

[26] K. Kunisch and B. Vexler, Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Contr. Opt. 46 (2007) 1368-1397. | MR 2346385 | Zbl 1159.35398

[27] T. Linss, Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Comm. Numer. Methods Engrg. 21 (2005) 515-525. | MR 2171791 | Zbl 1081.65111

[28] G. Lube and T. Apel, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. | MR 1408603 | Zbl 0878.65097

[29] G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16 (2006) 949-966. | MR 2250026 | Zbl 1095.76032

[30] G. Lube, T. Knopp and R. Gritzki, Stabilized FEM with anisotropic mesh refinement for the Oseen problem, in Proceedings ENUMATH 2005, Springer (2006) 799-806. | MR 2303711 | Zbl 1117.76034

[31] G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied ro the Oseen problem. ESAIM: M2AN 41 (2007) 713-742. | Numdam | MR 2362912 | Zbl pre05289494

[32] S. Micheletti, S. Perotto and M. Picasso, Stabilized finite elements on anisotropic meshes: A priori estimate for the advection-diffusion and the Stokes problem. SIAM J. Numer. Anal. 41 (2003) 1131-1162. | MR 2005198 | Zbl 1053.65089

[33] H. Paillere, P. Le Quéré, C. Weisman, J. Vierendeels, E. Dick, M. Braack, F. Dabbene, A. Beccantini, E. Studer, T. Kloczko, C. Corre, V. Heuveline, M. Darbandi and S. Hosseinizadeh, Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference. ESAIM: M2AN 39 (2005) 617-621. | Numdam | MR 2157154 | Zbl 1130.76049

[34] L. Tobiska and G. Lube, A modified streamline diffusion method for solving the stationary Navier-Stokes equations. Numer. Math. 59 (1991) 13-29. | MR 1103751 | Zbl 0696.76034