We propose a model for segmentation problems involving an energy concentrated on the vertices of an unknown polyhedral set, where the contours of the images to be recovered have preferred directions and focal points. We prove that such an energy is obtained as a -limit of functionals defined on sets with smooth boundary that involve curvature terms of the boundary. The minimizers of the limit functional are polygons with edges either parallel to some prescribed directions or pointing to some fixed points, that can also be taken as unknown of the problem.
@article{M2AN_2008__42_5_729_0, author = {Braides, Andrea and Riey, Giuseppe}, title = {A variational model in image processing with focal points}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {729-748}, doi = {10.1051/m2an:2008024}, mrnumber = {2454621}, zbl = {pre05351736}, zbl = {1213.94012}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_5_729_0} }
Braides, Andrea; Riey, Giuseppe. A variational model in image processing with focal points. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 729-748. doi : 10.1051/m2an:2008024. http://gdmltest.u-ga.fr/item/M2AN_2008__42_5_729_0/
[1] | Zbl 0676.49029
and A Braides, Functionals defined on partitions of sets of finite perimeter, I and II. J. Math. Pures. Appl. 69 (1990) 285-305 and 307-333.[2] Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR 1075076 | Zbl 0722.49020
and ,[3] Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). | MR 1857292 | Zbl 0957.49001
, and ,[4] Mathematical problems in image processing. Partial differential equations and the calculus of variations. Springer, New York (2006). | MR 2244145 | Zbl 1110.35001
and ,[5] An image segmentation variational model with free discontinuities and contour curvature. Math. Mod. Meth. Appl. Sci. 14 (2004) 1-45. | MR 2037779 | Zbl 1044.49009
and ,[6] Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 839-880. | Numdam | MR 2097034 | Zbl 1110.49014
and ,[7] Semicontinuity and relaxation properties of a curvature depending functional in 2D. Ann. Scuola Norm. Sup. Pisa (4) 20 (1993) 247-297. | Numdam | MR 1233638 | Zbl 0797.49013
, and ,[8] Visual Reconstruction. MIT Press, Cambridge, MA (1987). | MR 919733
and ,[9] Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). | MR 1651773 | Zbl 0909.49001
,[10] -Convergence for Beginners. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl pre01865939
,[11] Curvature theory of boundary phases: the two-dimensional case. Interfaces Free Bound. 4 (2002) 345-370. | MR 1935643 | Zbl 1029.49039
and ,[12] Approximation by -convergence of a curvature-depending functional in visual reconstruction. Comm. Pure Appl. Math. 59 (2006) 71-121. | MR 2180084 | Zbl 1098.49012
and ,[13] A relaxation result for energies defined on pairs set-function and applications. ESAIM: COCV 13 (2007) 717-734. | Numdam | MR 2351400 | Zbl 1149.49017
, and ,[14] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR 1331589 | Zbl 0830.49015
,[15] Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. | Numdam | MR 1700035 | Zbl 0947.65076
,[16] Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN 33 (1999) 651-672. | Numdam | MR 1726478 | Zbl 0943.49011
and ,[17] On curvature sensitive image segmentation. Nonlin. Anal. 39 (2000) 711-730. | MR 1733124 | Zbl 0942.68135
,[18] An Introduction to -Convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[19] A variational method in image segmentation: existence and approximation results. Acta Math. 168 (1992) 89-151. | MR 1149865 | Zbl 0772.49006
, and ,[20] Curvature varifolds with boundary. J. Diff. Geom. 43 (1996) 807-843. | MR 1412686 | Zbl 0865.49030
,[21] Visual reconstruction with discontinuities using variational methods. Image Vis. Comput. 10 (1992) 30-38.
,[22] Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 3 (1977) 526-529. | MR 473971 | Zbl 0364.49006
and ,[23] Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications 14. Birkhäuser, Basel (1995). | MR 1321598
and ,[24] Elastica and computer vision, in Algebraic Geometry and its Applications (West Lafayette, IN 1990), Springer, New York (1994) 491-506. | MR 1272050 | Zbl 0798.53003
,[25] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR 997568 | Zbl 0691.49036
and ,[26] Filtering, Segmentation and Depth, in Lecture Notes in Computer Science 662, Springer-Verlag, Berlin (1993). | MR 1226232 | Zbl 0801.68171
, and ,[27] On a modified conjecture of De Giorgi. Math. Z. 254 (2006) 675-714. | Zbl 1126.49010
and ,[28] Uses of elliptic approximations in computer vision, in Variational Methods for Discontinuous Structures, Birkhäuser, Basel (1996) 19-34. | MR 1414486 | Zbl 0871.65120
,[29] A common framework for curve evolution, segmentation and anisotropic diffusion, in IEEE Conference on Computer Vision and Pattern Recognition, June (1996).
,