A variational model in image processing with focal points
Braides, Andrea ; Riey, Giuseppe
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008), p. 729-748 / Harvested from Numdam

We propose a model for segmentation problems involving an energy concentrated on the vertices of an unknown polyhedral set, where the contours of the images to be recovered have preferred directions and focal points. We prove that such an energy is obtained as a Γ-limit of functionals defined on sets with smooth boundary that involve curvature terms of the boundary. The minimizers of the limit functional are polygons with edges either parallel to some prescribed directions or pointing to some fixed points, that can also be taken as unknown of the problem.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/m2an:2008024
Classification:  68U10,  94A08,  49J45
@article{M2AN_2008__42_5_729_0,
     author = {Braides, Andrea and Riey, Giuseppe},
     title = {A variational model in image processing with focal points},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {42},
     year = {2008},
     pages = {729-748},
     doi = {10.1051/m2an:2008024},
     mrnumber = {2454621},
     zbl = {pre05351736},
     zbl = {1213.94012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2008__42_5_729_0}
}
Braides, Andrea; Riey, Giuseppe. A variational model in image processing with focal points. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 729-748. doi : 10.1051/m2an:2008024. http://gdmltest.u-ga.fr/item/M2AN_2008__42_5_729_0/

[1] L. Ambrosio and A Braides, Functionals defined on partitions of sets of finite perimeter, I and II. J. Math. Pures. Appl. 69 (1990) 285-305 and 307-333. | Zbl 0676.49029

[2] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR 1075076 | Zbl 0722.49020

[3] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). | MR 1857292 | Zbl 0957.49001

[4] G. Aubert and P. Kornprobst, Mathematical problems in image processing. Partial differential equations and the calculus of variations. Springer, New York (2006). | MR 2244145 | Zbl 1110.35001

[5] G. Bellettini and R. March, An image segmentation variational model with free discontinuities and contour curvature. Math. Mod. Meth. Appl. Sci. 14 (2004) 1-45. | MR 2037779 | Zbl 1044.49009

[6] G. Bellettini and L. Mugnai, Characterization and representation of the lower semicontinuous envelope of the elastica functional. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21 (2004) 839-880. | Numdam | MR 2097034 | Zbl 1110.49014

[7] G. Bellettini, G. Dal Maso and M. Paolini, Semicontinuity and relaxation properties of a curvature depending functional in 2D. Ann. Scuola Norm. Sup. Pisa (4) 20 (1993) 247-297. | Numdam | MR 1233638 | Zbl 0797.49013

[8] A. Blake and A. Zisserman, Visual Reconstruction. MIT Press, Cambridge, MA (1987). | MR 919733

[9] A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). | MR 1651773 | Zbl 0909.49001

[10] A. Braides, Γ-Convergence for Beginners. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl pre01865939

[11] A. Braides and A. Malchiodi, Curvature theory of boundary phases: the two-dimensional case. Interfaces Free Bound. 4 (2002) 345-370. | MR 1935643 | Zbl 1029.49039

[12] A. Braides and R. March, Approximation by Γ-convergence of a curvature-depending functional in visual reconstruction. Comm. Pure Appl. Math. 59 (2006) 71-121. | MR 2180084 | Zbl 1098.49012

[13] A. Braides, A. Chambolle and M. Solci, A relaxation result for energies defined on pairs set-function and applications. ESAIM: COCV 13 (2007) 717-734. | Numdam | MR 2351400 | Zbl 1149.49017

[14] A. Chambolle, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR 1331589 | Zbl 0830.49015

[15] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional. ESAIM: M2AN 33 (1999) 261-288. | Numdam | MR 1700035 | Zbl 0947.65076

[16] A. Chambolle and G. Dal Maso, Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: M2AN 33 (1999) 651-672. | Numdam | MR 1726478 | Zbl 0943.49011

[17] A. Coscia, On curvature sensitive image segmentation. Nonlin. Anal. 39 (2000) 711-730. | MR 1733124 | Zbl 0942.68135

[18] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[19] G. Dal Maso, J.M. Morel and S. Solimini, A variational method in image segmentation: existence and approximation results. Acta Math. 168 (1992) 89-151. | MR 1149865 | Zbl 0772.49006

[20] C. Mantegazza, Curvature varifolds with boundary. J. Diff. Geom. 43 (1996) 807-843. | MR 1412686 | Zbl 0865.49030

[21] R. March, Visual reconstruction with discontinuities using variational methods. Image Vis. Comput. 10 (1992) 30-38.

[22] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 3 (1977) 526-529. | MR 473971 | Zbl 0364.49006

[23] J.M. Morel and S. Solimimi, Variational Methods in Image Segmentation, Progress in Nonlinear Differential Equations and Their Applications 14. Birkhäuser, Basel (1995). | MR 1321598

[24] D. Mumford, Elastica and computer vision, in Algebraic Geometry and its Applications (West Lafayette, IN 1990), Springer, New York (1994) 491-506. | MR 1272050 | Zbl 0798.53003

[25] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR 997568 | Zbl 0691.49036

[26] M. Nitzberg, D. Mumford and T. Shiota, Filtering, Segmentation and Depth, in Lecture Notes in Computer Science 662, Springer-Verlag, Berlin (1993). | MR 1226232 | Zbl 0801.68171

[27] M. Röger and R. Schätzle, On a modified conjecture of De Giorgi. Math. Z. 254 (2006) 675-714. | Zbl 1126.49010

[28] J. Shah, Uses of elliptic approximations in computer vision, in Variational Methods for Discontinuous Structures, Birkhäuser, Basel (1996) 19-34. | MR 1414486 | Zbl 0871.65120

[29] J. Shah, A common framework for curve evolution, segmentation and anisotropic diffusion, in IEEE Conference on Computer Vision and Pattern Recognition, June (1996).