In this work, we consider the quasistatic frictionless contact problem between a viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is employed to model the piezoelectric material and the normal compliance condition is used to model the contact. The variational formulation is derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme is introduced based on the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximative solutions and, as a consequence, the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, some two-dimensional examples are presented to demonstrate the performance of the algorithm.
@article{M2AN_2008__42_4_667_0, author = {Barboteu, Mikael and Fern\'andez, Jose Ramon and Ouafik, Youssef}, title = {Numerical analysis of a frictionless viscoelastic piezoelectric contact problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {667-682}, doi = {10.1051/m2an:2008022}, mrnumber = {2437778}, zbl = {1142.74029}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_4_667_0} }
Barboteu, Mikael; Fernández, Jose Ramon; Ouafik, Youssef. Numerical analysis of a frictionless viscoelastic piezoelectric contact problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 667-682. doi : 10.1051/m2an:2008022. http://gdmltest.u-ga.fr/item/M2AN_2008__42_4_667_0/
[1] Solution of frictional contact problems by an EBE preconditioner. Comput. Mech. 20 (1997) 370-378. | Zbl 0896.73054
, and ,[2] Finite element approximation of piezoelectric plates. Internat. J. Numer. Methods Engrg. 50 (2001) 1469-1499. | MR 1811534 | Zbl 0982.74063
, and ,[3] Numerical analysis of two frictionless elastic-piezoelectric contact problems. J. Math. Anal. Appl. 339 (2008) 905-917. | MR 2375246 | Zbl 1127.74028
, and ,[4] Saint-Venant's principle in linear piezoelectricity. J. Elasticity 38 (1995) 209-218. | MR 1336038 | Zbl 0828.73061
and ,[5] The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl. 103, Kluwer Acad. Publ., Dordrecht (2002) 347-354. | MR 1968676 | Zbl 1053.74583
, and ,[6] The finite element method for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991) 17-352. | MR 520174 | Zbl 0875.65086
,[7] Inequalities in Mechanics and Physics. Springer Verlag, Berlin (1976). | MR 521262 | Zbl 0331.35002
and ,[8] A frictionless contact problem for elastic-viscoplastic materials with normal compliance: Numerical analysis and computational experiments. Numer. Math. 90 (2002) 689-719. | MR 1888835 | Zbl 1143.65391
, and ,[9] Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). | MR 737005 | Zbl 0536.65054
,[10] Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society-International Press (2002). | MR 1935666 | Zbl 1013.74001
and ,[11] Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377-398. | MR 1865238 | Zbl 0999.74087
, and ,[12] A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 209-232. | MR 2153041 | Zbl 1105.74028
, and ,[13] Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990).
,[14] Frictional contact problems with normal compliance. Internat. J. Engrg. Sci. 26 (1988) 811-832. | MR 958441 | Zbl 0662.73079
, and ,[15] The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Modelling 28 (1998) 19-28. | MR 1616376 | Zbl 1126.74392
and ,[16] Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11 (1987) 407-428. | MR 881727 | Zbl 0679.73050
and ,[17] Polarisation gradient in elastic dielectrics. Internat. J. Solids Structures 4 (1968) 637-663. | Zbl 0159.57001
,[18] Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Internat. J. Solids Structures 5 (1969) 1197-1213.
,[19] Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity 4 (1972) 217-280.
,[20] A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci. 14 (1991) 295-299. | MR 1113605 | Zbl 0725.73023
and ,[21] A piezoelectric body in frictional contact. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 233-242. | MR 2153042 | Zbl 1114.74038
,[22] Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14 (2004) 25-40. | MR 2111832 | Zbl 1078.74036
and ,[23] A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9 (2004) 229-242. | MR 2099952 | Zbl 1092.74029
and ,[24] A piezoelectric contact problem with normal compliance. Appl. Math. 32 (2005) 425-442. | MR 2213050 | Zbl 1138.74372
and ,[25] The elastic dielectrics. J. Rational Mech. Anal. 5 (1956) 849-915. | MR 81074 | Zbl 0072.23803
,[26] Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5 (1960) 440-452. | MR 119548 | Zbl 0113.23502
,[27] A dynamical theory of elastic dielectrics. Internat. J. Engrg. Sci. 1 (1963) 101-126. | MR 153286
,[28] On the linear piezoelectricity of composite materials. Math. Methods Appl. Sci. 14 (1991) 403-412. | MR 1119237 | Zbl 0731.73071
and ,[29] Computational Contact Mechanics. Wiley-Verlag (2002). | Zbl 1104.74002
,