In this paper we construct a model to describe some aspects of the deformation of the central region of the human lung considered as a continuous elastically deformable medium. To achieve this purpose, we study the interaction between the pipes composing the tree and the fluid that goes through it. We use a stationary model to determine the deformed radius of each branch. Then, we solve a constrained minimization problem, so as to minimize the viscous (dissipated) energy in the tree. The key feature of our approach is the use of a fixed point theorem in order to find the optimal flow associated to a deformed tree. We also give some numerical results with interesting consequences on human lung deformation during expiration, particularly concerning the localization of the equal pressure point (EPP).
@article{M2AN_2008__42_4_507_0, author = {Mauroy, Benjamin and Meunier, Nicolas}, title = {Optimal Poiseuille flow in a finite elastic dyadic tree}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {507-533}, doi = {10.1051/m2an:2008015}, mrnumber = {2437772}, zbl = {pre05318499}, zbl = {1203.74033}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_4_507_0} }
Mauroy, Benjamin; Meunier, Nicolas. Optimal Poiseuille flow in a finite elastic dyadic tree. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 507-533. doi : 10.1051/m2an:2008015. http://gdmltest.u-ga.fr/item/M2AN_2008__42_4_507_0/
[1] Principles of Comparative Respiratory Physiology. Elsevier/North-Holland Biomedical Press (1982).
,[2] Electromagnétisme 2. InterEditions (1979).
,[3] A viscoelastic model with non-local damping application to the human lungs. ESAIM: M2AN 40 (2006) 201-224. | Numdam | MR 2223510 | Zbl pre05038398
, and ,[4] Pneumologie. Masson (1999).
,[5] Hydrodynamique dans le poumon, relations entre flux et géométries. Ph.D. thesis, ENS de Cachan (2004), http://www.cmla.ens-cachan.fr/mauroy/mauroythese.pdf
,[6] Interplay between geometry and flow distribution in an airway tree. Phys. Rev. Lett. 90 (2003) 148101.
, , , and ,[7] An optimal bronchial tree may be dangerous. Nature 427 (2004) 633-636.
, , and ,[8] Une modélisation du poumon humain par un arbre infini. CANUM (2006).
and ,[9] Impedance measurements of ex vivo rat lung at different volumes of inflation. J. Acoust. Soc. Am. 114 (2003) 3384-3393.
, and ,[10] Modeling, segmentation, and caliber estimation of bronchi in high-resolution computerized tomography. J. Electron. Imaging 8 (1999) 36-45.
, , and ,[11] Elastic moduli of excised constricted rat lungs. J. Appl. Physiol. 86 (1999) 66-70.
and ,[12] Morphometry of the Human Lung. Springer, Verlag (1963).
,[13] The Pathway for Oxygen. Harvard University Press (1984).
,[14] A general model for the origin of allometric scaling laws in biology. Science 276 (1997) 122-126.
, and ,[15] The physiology of forced expiration. Paed. Resp. Review 1 (2000) 36-39.
,