This paper is devoted to eulerian models for incompressible fluid-structure systems. These models are primarily derived for computational purposes as they allow to simulate in a rather straightforward way complex 3D systems. We first analyze the level set model of immersed membranes proposed in [Cottet and Maitre, Math. Models Methods Appl. Sci. 16 (2006) 415-438]. We in particular show that this model can be interpreted as a generalization of so-called Korteweg fluids. We then extend this model to more generic fluid-structure systems. In this framework, assuming anisotropy, the membrane model appears as a formal limit system when the elastic body width vanishes. We finally provide some numerical experiments which illustrate this claim.
@article{M2AN_2008__42_3_471_0, author = {Cottet, Georges-Henri and Maitre, Emmanuel and Milcent, Thomas}, title = {Eulerian formulation and level set models for incompressible fluid-structure interaction}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {471-492}, doi = {10.1051/m2an:2008013}, mrnumber = {2423795}, zbl = {pre05288668}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_3_471_0} }
Cottet, Georges-Henri; Maitre, Emmanuel; Milcent, Thomas. Eulerian formulation and level set models for incompressible fluid-structure interaction. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 471-492. doi : 10.1051/m2an:2008013. http://gdmltest.u-ga.fr/item/M2AN_2008__42_3_471_0/
[1] Modélisation et analyse mathématique de problèmes d'interaction fluide-structure. Ph.D. thesis, Université de Versailles, France (2004).
,[2] Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771. | MR 673830 | Zbl 0509.35067
, and ,[3] Elasticité tridimensionnelle. Masson (1985). | MR 819990 | Zbl 0572.73027
,[4] A level-set formulation of immersed boundary methods for fluid-structure interaction problems. C. R. Acad. Sci. Paris, Ser. I 338 (2004) 581-586. | MR 2057034 | Zbl 1101.74028
and ,[5] A level-set method for fluid-structure interactions with immersed surfaces. Math. Models Methods Appl. Sci. 16 (2006) 415-438. | MR 2238758 | Zbl 1088.74050
and ,[6] An Eulerian method for fluid-structure interaction with biophysical applications, in European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006, P. Wesseling, E. Oñate and J. Périaux Eds., TU Delft, The Netherlands (2006).
, and ,[7] Nonlinear solid mechanics: a continuum approach for engineering. Wiley (2000). | MR 1827472 | Zbl 0980.74001
,[8] An immersed interface method for incompressible Navier-Stokes equations. SIAM J. Sci. Comp. 25 (2003) 832-856. | MR 2046114 | Zbl pre02030264
and ,[9] Applications of level set methods in computational biophysics. Math. Comput. Model. (to appear).
, , , and ,[10] Comparison between advected-field and level-set methods in the study of vesicle dynamics. (In preparation).
, and ,[11] Mechanical response of fiber-reinforced incompressible non-linearly elastic solids. Int. J. Nonlinear Mech. 40 (2005) 213-227. | Zbl pre05138581
and ,[12] Non-linear elastic deformations. Dover Publications (1984).
,[13] Nonlinear elasticity, anisoptropy, material staility and residual stresses in soft tissue, in Biomechanics of Soft Tissue in Cardiovascular Systems, G.A. Holzapfel and R.W. Ogden Eds., CISM Course and Lectures Series 441, Springer, Wien (2003) 65-108. | Zbl 1151.74386
,[14] Level set methods and Dynamic Implicit Surfaces. Springer (2003). | MR 1939127 | Zbl 1026.76001
and ,[15] The immersed boundary method. Acta Numer. 11 (2002) 479-517. | MR 2009378 | Zbl 1123.74309
,[16] The numerical approximation of a delta function with application to level-set methods. J. Comp. Phys. 211 (2003) 77-90. | MR 2168871 | Zbl 1086.65503
,[17] Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8 (1977) 467-529. | Zbl 0404.35081
,[18] Local strong solution for the incompressible Korteweg model. C. R. Acad. Sci. Paris, Ser. I 342 (2006) 169-174. | MR 2198187 | Zbl 1089.35047
, , , and ,[19] Interpolation theory, function spaces, differential operators. North-Holland (1978). | MR 503903 | Zbl 0387.46032
,