We consider the Euler equations for compressible fluids in a nozzle whose cross-section is variable and may contain discontinuities. We view these equations as a hyperbolic system in nonconservative form and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl. 74 (1995) 483-548]. Observing that the entropy equality has a fully conservative form, we derive a minimum entropy principle satisfied by entropy solutions. We then establish the stability of a class of numerical approximations for this system.
@article{M2AN_2008__42_3_425_0, author = {Kr\"oner, Dietmar and Lefloch, Philippe G. and Thanh, Mai-Duc}, title = {The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {425-442}, doi = {10.1051/m2an:2008011}, mrnumber = {2423793}, zbl = {1139.76048}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_3_425_0} }
Kröner, Dietmar; Lefloch, Philippe G.; Thanh, Mai-Duc. The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 425-442. doi : 10.1051/m2an:2008011. http://gdmltest.u-ga.fr/item/M2AN_2008__42_3_425_0/
[1] On the solution to the Riemann problem for the compressible duct flow. SIAM J. Appl. Math. 64 (2004) 878-901. | MR 2068446 | Zbl 1065.35191
and ,[2] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comp. 25 (2004) 2050-2065. | MR 2086830 | Zbl 1133.65308
, , , and ,[3] Finite volume schemes with equilibrium type discretization of source terms for scalar conservation laws. J. Comput. Phys. 187 (2003) 391-427. | MR 1980265 | Zbl 1022.65099
and ,[4] Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comput. 72 (2003) 131-157. | MR 1933816 | Zbl 1017.65070
, and ,[5] Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004). | MR 2128209 | Zbl 1086.65091
,[6] Supersonic Flow and Shock Waves. John Wiley, New York (1948). | MR 29615 | Zbl 0041.11302
and ,[7] Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483-548. | MR 1365258 | Zbl 0853.35068
, and ,[8] The Riemann problem for a class of resonant nonlinear systems of balance laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 881-902. | Numdam | MR 2097035 | Zbl 1086.35069
and ,[9] A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comp. Math. Appl. 39 (2000) 135-159. | MR 1753567 | Zbl 0963.65090
,[10] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | MR 1377240 | Zbl 0876.65064
and ,[11] Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35 2117-2127 (1998). | MR 1655839 | Zbl 0922.35089
, , and ,[12] Nonlinear resonance in systems of conservation laws. SIAM J. Appl. Math. 52 (1992) 1260-1278. | MR 1182123 | Zbl 0794.35100
and ,[13] Convergence of the Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640. | MR 1331577 | Zbl 0838.35075
and ,[14] On the Model of Compressible Flows in a Nozzle: Mathematical Analysis and Numerical Methods, in Proc. 10th Intern. Conf. “Hyperbolic Problem: Theory, Numerics, and Applications”, Osaka (2004), Yokohama Publishers (2006) 117-124. | Zbl 1107.76064
and ,[15] Numerical solutions to compressible flows in a nozzle with variable cross-section. SIAM J. Numer. Anal. 43 (2006) 796-824. | MR 2177892 | Zbl 1093.35050
and ,[16] Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form. Comm. Partial. Diff. Eq. 13 (1988) 669-727. | MR 934378 | Zbl 0683.35049
,[17] Shock waves for nonlinear hyperbolic systems in nonconservative form. Preprint 593, Institute Math. Appl., Minneapolis (1989).
,[18] Hyperbolic systems of conservation laws: The theory of classical and non-classical shock waves, Lectures in Mathematics. ETH Zürich, Birkäuser (2002). | MR 1927887 | Zbl 1019.35001
,[19] Graph solutions of nonlinear hyperbolic systems. J. Hyper. Diff. Equ. 1 (2004) 243-289. | MR 2111578 | Zbl 1071.35078
,[20] Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5 (1993) 261-280. | MR 1216035 | Zbl 0804.35086
and ,[21] The Riemann problem for fluid flows in a nozzle with discontinuous cross-section. Comm. Math. Sci. 1 (2003) 763-797. | MR 2041456 | Zbl 1091.35044
and ,[22] The Riemann problem for the shallow water equations with discontinuous topography. Comm. Math. Sci. 5 (2007) 865-885. | MR 2375051 | Zbl 1145.35082
and ,[23] A Riemann problem in gas dynamics with bifurcation. Hyperbolic partial differential equations III. Comput. Math. Appl. (Part A) 12 (1986) 433-455. | MR 841979 | Zbl 0611.35060
and ,[24] Skew selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103 (1984) 428-442. | MR 762567 | Zbl 0599.35102
,[25] A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2 (1986) 211-219. | MR 863987 | Zbl 0625.76084
,