In this paper, we consider hamiltonian systems. We prove the existence of a first derivative of the flow with respect to initial values and show that it satisfies the symplecticity condition almost everywhere in the phase-space. In a second step, we present a geometric integrator for such systems (called the SDH method) based on B-splines interpolation and a splitting method introduced by McLachlan and Quispel [Appl. Numer. Math. 45 (2003) 411-418], and we prove it is convergent, and that it preserves the energy and the volume.
@article{M2AN_2008__42_2_223_0, author = {Chartier, Philippe and Faou, Erwan}, title = {Geometric integrators for piecewise smooth hamiltonian systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {223-241}, doi = {10.1051/m2an:2008006}, mrnumber = {2405146}, zbl = {1145.65110}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_2_223_0} }
Chartier, Philippe; Faou, Erwan. Geometric integrators for piecewise smooth hamiltonian systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 223-241. doi : 10.1051/m2an:2008006. http://gdmltest.u-ga.fr/item/M2AN_2008__42_2_223_0/
[1] Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 3 (1995) 511-547. | MR 1022305 | Zbl 0696.34049
and ,[2] Measure theory and fine properties of functions. CRC Press (1992). | MR 1158660 | Zbl 0804.28001
and ,[3] Important aspects of geometric numerical integration. J. Sci. Comput. 25 (2005) 67-81. | MR 2231943
,[4] Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31. Springer, Berlin (2002). | MR 1904823 | Zbl 0994.65135
, and ,[5] A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999) 403-426. | MR 1715573 | Zbl 0937.65077
and ,[6] A time-reversible, regularized, switching integrator for the n-body problem. SIAM J. Sci. Comput. 22 (2000) 1016-1035. | MR 1785344 | Zbl 0993.70003
and ,[7] A molecular dynamics algorithm for mixed hard-core/continuous potentials. Mol. Phys. 98 (2000) 309-316.
and ,[8] Renormalized solutions of some transport equations with partially velocities and applications. Ann. Mat. Pura Appl. 1 (2004) 97-130. | MR 2044334 | Zbl pre05058532
and ,[9] Geometric integration of conservative polynomial ODEs. Appl. Numer. Math. 45 (2003) 411-418. | MR 1983487 | Zbl 1021.65064
and ,