A C1-P2 finite element without nodal basis
Zhang, Shangyou
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008), p. 175-192 / Harvested from Numdam

A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving the biharmonic equation. Numerical results are provided confirming the analysis.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/m2an:2008002
Classification:  65N30,  73C35
@article{M2AN_2008__42_2_175_0,
     author = {Zhang, Shangyou},
     title = {A C1-P2 finite element without nodal basis},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {42},
     year = {2008},
     pages = {175-192},
     doi = {10.1051/m2an:2008002},
     mrnumber = {2405144},
     zbl = {1145.65102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2008__42_2_175_0}
}
Zhang, Shangyou. A C1-P2 finite element without nodal basis. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 175-192. doi : 10.1051/m2an:2008002. http://gdmltest.u-ga.fr/item/M2AN_2008__42_2_175_0/

[1] D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky and R.S. Steplemen Eds. (1992).

[2] L.J. Billera, Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. AMS 310 (1988) 325-340. | MR 965757 | Zbl 0718.41017

[3] J.H. Bramble and X. Zhang, Multigrid methods for the biharmonic problem discretized by conforming C1 finite elements on nonnested meshes. Numer. Functional Anal. Opt. 16 (1995) 835-846. | MR 1355276 | Zbl 0842.65081

[4] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101

[5] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer (1991). | MR 1115205 | Zbl 0788.73002

[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[7] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. R-2 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Pub. Inc. (1985). | MR 775683 | Zbl 0695.35060

[9] T. Hangelbroek, G. Nürnberger, C. Rössl, H.-P. Seidel and F. Zeilfelder, Dimension of C 1 -splines on type-6 tetrahedral partitions. J. Approx. Theory 131 (2004) 157-184. | MR 2106535 | Zbl 1062.65014

[10] G. Heindl, Interpolation and approximation by piecewise quadratic C1-functions of two variables, in Multivariate Approximation Theory, W. Schempp and K. Zeller Eds., Birkhäuser, Basel (1979) 146-161. | MR 560670 | Zbl 0424.41020

[11] M.-J. Lai, Scattered data interpolation and approximation using bivariate C1 piecewise cubic polynomials. Comput. Aided Geom. Design 13 (1996) 81-88. | MR 1376901 | Zbl 0873.65011

[12] H. Liu, D. Hong and D.-Q. Cao, Bivariate C 1 cubic spline space over a nonuniform type-2 triangulation and its subspaces with boundary conditions. Comput. Math. Appl. 49 (2005) 1853-1865. | MR 2154690 | Zbl 1085.41005

[13] J. Morgan and L.R. Scott, A nodal basis for C 1 piecewise polynomials of degree n. Math. Comp. 29 (1975) 736-740. | MR 375740 | Zbl 0307.65074

[14] J. Morgan and L.R. Scott, The dimension of the space of C 1 piecewise-polynomials. Research Report UH/MD 78, Dept. Math., Univ. Houston, USA (1990).

[15] G. Nürnberger and F. Zeilfelder, Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121 (2000) 125-152. | MR 1780046 | Zbl 0960.41006

[16] G. Nürnberger, C. Rössl, H.-P. Seidel and F. Zeilfelder, Quasi-interpolation by quadratic piecewise polynomials in three variables. Comput. Aided Geom. Design 22 (2005) 221-249. | MR 2122490 | Zbl 1082.65009

[17] G. Nürnberger, V. Rayevskaya, L.L. Schumaker and F. Zeilfelder, Local Lagrange interpolation with bivariate splines of arbitrary smoothness. Constr. Approx. 23 (2006) 33-59. | MR 2176226 | Zbl 1088.41010

[18] P. Oswald, Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29 (1992) 1610-1625. | MR 1191139 | Zbl 0771.65071

[19] M.J.D. Powell, Piecewise quadratic surface fitting for contour plotting, in Software for Numerical Mathematics, D.J. Evans Ed., Academic Press, New York (1976) 253-2271. | MR 362831

[20] M.J.D. Powell and M.A. Sabin, Piecewise quadratic approximations on triangles. ACM Trans. on Math. Software 3 (1977) 316-325. | MR 483304 | Zbl 0375.41010

[21] J. Qin On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. thesis, Pennsylvania State University, USA (1994).

[22] J. Qin and S. Zhang, Stability and approximability of the P1-P0 element for Stokes equations. Int. J. Numer. Meth. Fluids 54 (2007) 497-515. | MR 2322456 | Zbl pre05163520

[23] P.A. Raviart and V. Girault, Finite element methods for Navier-Stokes equations. Springer (1986). | MR 851383 | Zbl 0585.65077

[24] L.L. Schumaker and T. Sorokina, A trivariate box macroelement. Constr. Approx. 21 (2005) 413-431. | MR 2122316 | Zbl 1077.41009

[25] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR 1011446 | Zbl 0696.65007

[26] T. Sorokina and F. Zeilfelder, Optimal quasi-interpolation by quadratic C 1 -splines on type-2 triangulations, in Approximation Theory XI: Gatlinburg 2004, C.K. Chui, M. Neamtu and L.L. Schumaker Eds., Nashboro Press, Brentwood, TN (2004) 423-438. | MR 2126694 | Zbl 1074.65015

[27] G. Strang, Piecewise polynomials and the finite element method. Bull. AMS 79 (1973) 1128-1137. | MR 327060 | Zbl 0285.41009

[28] G. Strang, The dimension of piecewise polynomials, and one-sided approximation, in Conf. on Numerical Solution of Differential Equations, Lecture Notes in Mathematics 363, G.A. Watson Ed., Springer-Verlag, Berlin (1974) 144-152. | MR 430621 | Zbl 0279.65091

[29] M. Wang and J. Xu, Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comp. 76 (2007) 1-18. | MR 2261009 | Zbl 1125.65105

[30] M. Wang and J. Xu, The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103 (2006) 155-169. | MR 2207619 | Zbl 1092.65103

[31] S. Zhang, An optimal order multigrid method for biharmonic C1 finite element equations. Numer. Math. 56 (1989) 613-624. | MR 1024015 | Zbl 0667.65089

[32] X. Zhang, Personal communication. University of Maryland, USA (1990).

[33] X. Zhang, Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 15 (1994) 621-644. | MR 1273156 | Zbl 0803.65118