In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
@article{M2AN_2008__42_1_93_0, author = {Carfora, Maria Francesca and Natalini, Roberto}, title = {A discrete kinetic approximation for the incompressible Navier-Stokes equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {93-112}, doi = {10.1051/m2an:2007055}, mrnumber = {2387423}, zbl = {1135.76037}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_1_93_0} }
Carfora, Maria Francesca; Natalini, Roberto. A discrete kinetic approximation for the incompressible Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 93-112. doi : 10.1051/m2an:2007055. http://gdmltest.u-ga.fr/item/M2AN_2008__42_1_93_0/
[1] Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973-2004. | MR 1766856 | Zbl 0964.65096
and ,[2] Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comp. 73 (2004) 63-94. | MR 2034111 | Zbl 1031.65093
, and ,[3] Compressible and incompressible limits for hyperbolic systems with relaxation. J. Comput. Appl. Math. 168 (2004) 41-52. | MR 2078995 | Zbl 1058.76035
, , and ,[4] Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math. 59 (2006) 688-753. | MR 2172805 | Zbl 1100.35063
,[5] On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc. 132 (2004) 1021-1028. | MR 2045417 | Zbl 1080.35064
, and ,[6] Galilean-invariant Lattice-Boltzmann models with H theorem. Phys. Rev. E 68 (2003) 25103-25106.
, , , , and ,[7] Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113-170. | MR 1705583 | Zbl 0957.82028
,[8] Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623-672. | MR 1990588 | Zbl 1029.65092
,[9] Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004). | MR 2128209 | Zbl 1086.65091
,[10] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. | MR 242392 | Zbl 0198.50103
,[11] Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Amer. Math. Soc. 356 (2004) 2093-2121. | MR 2031055 | Zbl 1052.35014
and ,[12] W. E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017-1057; Projection method. II. Godunov-Ryabenki analysis. SIAM J. Numer. Anal. 33 (1996) 1597-1621. | MR 1342281 | Zbl 0842.76052
[13] Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries. SIAM J. Numer. Anal. 30 (1993) 609-629. | MR 1220643 | Zbl 0776.76055
and ,[14] Kinetic schemes in the case of low Mach numbers. J. Comput. Phys. 151 (1999) 947-968. | MR 1686387 | Zbl 0944.76056
,[15] Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comp. 22 (2000) 1-19. | MR 1769484 | Zbl 0972.76083
and ,[16] Rigorous Navier-Stokes limit of the Lattice Boltzmann equation. Asymptot. Anal. 35 (2003) 165-185. | MR 2007737 | Zbl 1043.76003
and ,[17] Application of a fractional-step method to incompressible Navier-Stokes. J. Comput. Phys. 59 (1985) 308-323. | MR 796611 | Zbl 0582.76038
and ,[18] A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Equation 148 (1998) 292-317. | MR 1643175 | Zbl 0911.35073
,[19] Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc. 134 (2006) 2251-2258. | MR 2213697 | Zbl pre05019448
and ,[20] Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications 21. Oxford University Press, Oxford (2002). | MR 2064166 | Zbl 1030.35002
,[21] Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids 24 (1995) 459-467. | MR 1328741 | Zbl 0845.76086
and ,[22] The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001). | MR 1857912
,[23] Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32 (1969) 135-153; Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33 (1969) 377-385. | MR 237973 | Zbl 0207.16904
,[24] Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow. SIAM J. Numer. Anal. 34 (1997) 723-755; Error analysis for Chorin's original fully discrete projection method and regularizations in space and time. SIAM J. Numer. Anal. 34 (1997) 1683-1697. | MR 1442936 | Zbl 1001.76063
,[25] Lattice-gas cellular automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics 1725. Springer-Verlag, Berlin (2000). | MR 1744724 | Zbl 0999.82054
,