We study a two-grid scheme fully discrete in time and space for solving the Navier-Stokes system. In the first step, the fully non-linear problem is discretized in space on a coarse grid with mesh-size and time step In the second step, the problem is discretized in space on a fine grid with mesh-size and the same time step, and linearized around the velocity computed in the first step. The two-grid strategy is motivated by the fact that under suitable assumptions, the contribution of to the error in the non-linear term, is measured in the norm in space and time, and thus has a higher-order than if it were measured in the norm in space. We present the following results: if then the global error of the two-grid algorithm is of the order of , the same as would have been obtained if the non-linear problem had been solved directly on the fine grid.
@article{M2AN_2008__42_1_141_0, author = {Abboud, Hyam and Sayah, Toni}, title = {A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {42}, year = {2008}, pages = {141-174}, doi = {10.1051/m2an:2007056}, mrnumber = {2387425}, zbl = {1137.76032}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2008__42_1_141_0} }
Abboud, Hyam; Sayah, Toni. A full discretization of the time-dependent Navier-Stokes equations by a two-grid scheme. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 42 (2008) pp. 141-174. doi : 10.1051/m2an:2007056. http://gdmltest.u-ga.fr/item/M2AN_2008__42_1_141_0/
[1] Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem. C. R. Acad. Sci. Paris, Ser. I 341 (2005). | MR 2168746 | Zbl 1078.65083
, and ,[2] Second-order two-grid finite element scheme for the fully discrete transient Navier-Stokes equations. Preprint, http://www.ann.jussieu.fr/publications/2007/R07040.html.
, and ,[3] Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[4] A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. | MR 799997 | Zbl 0593.76039
, and ,[5] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
,[6] Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25-57. | MR 1820836 | Zbl 0997.76043
and ,[7] Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945-980. | Numdam | MR 1866277 | Zbl 1032.76032
and ,[8] Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077
and ,[9] Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics 24. Pitman, Boston, (1985). | MR 775683 | Zbl 0695.35060
,[10] FreeFem++. See: http://www.freefem.org.
and ,[11] The Mathematical Theory of Viscous Incompressible Flow. (In Russian, 1961), First English translation, Gordon & Breach, New York (1963). | MR 155093 | Zbl 0121.42701
,[12] A two-level discretization method for the Navier-Stokes equations. Computers Math. Applic. 26 (1993) 33-38. | MR 1220955 | Zbl 0773.76042
,[13] Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Applied Math. Comput. 69 (1995) 263-274. | MR 1326676 | Zbl 0828.76017
and ,[14] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
,[15] Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). | Zbl 0165.10801
and ,[16] , Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584
[17] Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. | Numdam | MR 237972 | Zbl 0181.18903
,[18] A priori error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal. 10 (1973) 723-759. | MR 351124 | Zbl 0232.35060
,[19] Some Two-Grid Finite Element Methods. Tech. Report, P.S.U. (1992).
,[20] A novel two-grid method of semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231-237. | MR 1257166 | Zbl 0795.65077
,[21] Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759-1777. | Zbl 0860.65119
,