The sharp-interface approach for fluids with phase change : Riemann problems and ghost fluid techniques
Merkle, Christian ; Rohde, Christian
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007), p. 1089-1123 / Harvested from Numdam

Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions sharply, i.e., without artificial smearing in the physically irrelevant elliptic region. Numerical experiments demonstrate the reliability of the method.

Publié le : 2007-01-01
DOI : https://doi.org/10.1051/m2an:2007048
Classification:  35M10,  76T10
@article{M2AN_2007__41_6_1089_0,
     author = {Merkle, Christian and Rohde, Christian},
     title = {The sharp-interface approach for fluids with phase change : Riemann problems and ghost fluid techniques},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {41},
     year = {2007},
     pages = {1089-1123},
     doi = {10.1051/m2an:2007048},
     mrnumber = {2377108},
     zbl = {1134.35074},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2007__41_6_1089_0}
}
Merkle, Christian; Rohde, Christian. The sharp-interface approach for fluids with phase change : Riemann problems and ghost fluid techniques. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 1089-1123. doi : 10.1051/m2an:2007048. http://gdmltest.u-ga.fr/item/M2AN_2007__41_6_1089_0/

[1] R. Abeyaratne and J. Knowles, Kinetic relations and the propagation of phase boundaries in solids. Arch. Ration. Mech. Anal. 114 (1991) 119-154. | Zbl 0745.73001

[2] R. Abgrall and S. Karni, Compressible multifluid flows. J. Comput. Phys. 169 (2001) 594-623. | Zbl 1033.76029

[3] R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361-396. | Zbl 1072.76594

[4] T.D. Aslam, A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: Systems of equations. J. Sci. Comput. 19 (2003) 37-62. | Zbl 1081.65083

[5] N. Bedjaoui and P.G. Lefloch, Diffusive-dispersive travelling waves and kinetic relations. II. A hyperbolic-elliptic model of phase-transition dynamics. Proc. Roy. Soc. Edinburgh Sect. A 132A (2002) 1-21. | Zbl 1082.35104

[6] S. Benzoni-Gavage, Stability of multi-dimensional phase transitions in a van der Waals fluid. Nonlinear Anal., Theory Methods Appl. 31 (1998) 243-263. | Zbl 0928.76015

[7] C. Chalons, Transport-Equilibrium Schemes for Computing Nonclassical Shocks. I. Scalar Conservation Laws. Preprint, Laboratoire Jacques-Louis Lions (2005). | MR 2217927 | Zbl pre05303288

[8] C. Chalons and P.G. Lefloch, Computing undercompressive waves with the random choice scheme. Interfaces Free Bound. 5 (2003) 129-158. | Zbl 1038.35134

[9] R.M. Colombo and A. Corli, Continuous dependence in conservation laws with phase transitions. SIAM J. Math. Anal. 31 (1999) 34-62. | Zbl 0977.35085

[10] R.M. Colombo and A. Corli, Stability of the Riemann semigroup with respect to the kinetic condition. Quart. Appl. Math. 62 (2004) 541-551. | Zbl 1071.35082

[11] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der mathematischen Wisenschaften 325. Springer (2000). | MR 1763936 | Zbl 0940.35002

[12] H. Fan and M. Slemrod, Dynamic flows with liquid/vapor phase transitions, in Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam (2002) 373-420. | Zbl 1036.76059

[13] R.P. Fedkiw, T. Aslam, B. Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999) 457-492. | Zbl 0957.76052

[14] R.P. Fedkiw, T. Aslam and S. Xu, The ghost fluid method for deflagration and detonation discontinuities. J. Comput. Phys. 154 (1999) 393-427. | Zbl 0955.76071

[15] E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws. Appl. Math. Sci. 118 Springer (1996). | MR 1410987 | Zbl 0860.65075

[16] E. Godlewski and N. Seguin, The Riemann problem for a simple model of phase transition. Commun. Math. Sci. 4 (2006) 227-247. | Zbl 1103.35070

[17] B. Hayes and P.G. Lefloch, Nonclassical shocks and kinetic relations: strictly hyperbolic systems. SIAM J. Math. Anal. 31 (2000) 941-991. | Zbl 0953.35095

[18] T.Y. Hou, P. Rosakis and P.G. Lefloch, A level-set approach to the computation of twinning and phase-transition dynamics. J. Comput. Phys. 150 (1999) 302-331. | Zbl 0936.74052

[19] M. Kac, G.E. Uhlenbeck and P.C. Hemmer, On the van der Waals theory of the vapor-liquid equilibrium. I. Discussion of a one-dimensional model. J. Math. Phys. 4 (1963) 216-228. | Zbl 0938.82517

[20] S. Karni and R. Abgrall, Ghost-Fluids for the Poor: A Single Fluid Algorithm for Multifluids, in Lecture Notes in Mathematics, Proceedings of the 10th International Conference on Hyperbolic problems, theory and numerics, Springer (2001) 293-302.

[21] O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567-610. | Zbl 1088.76051

[22] P.G. Lefloch, Propagating phase boundaries: Formulation of the problem and existence via the Glimm method. Arch. Ration. Mech. Anal. 123 (1993) 153-197. | Zbl 0784.73010

[23] P.G. Lefloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. ETH Zürich, Birkhäuser (2002). | MR 1927887 | Zbl 1019.35001

[24] P.G. Lefloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase transitions. Proc. Royal Soc. Edinburgh A 131A (2001) 1-39. | Zbl 1021.35073

[25] P.G. Lefloch, J.M. Mercier and C. Rohde, Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 40 (2002) 1968-1992. | Zbl 1033.65073

[26] T.G. Liu, B.C. Khoo and K.S. Yeo, Ghost fluid method for strong impacting on material interfaces. J. Comput. Phys. 190 (2003) 651-681. | Zbl 1076.76592

[27] C. Merkle, Dynamical Phase Transitions in Compressible Media. Doctoral dissertation, Albert-Ludwigs-Universität Freiburg (2006) http://www.freidok.uni-freiburg.de/volltexte/2674/. | Zbl 1137.76044

[28] C. Merkle and C. Rohde, Computation of dynamical phase transitions in solids. Appl. Numer. Math. 56 (2006) 1450-1463. | Zbl 1116.74049

[29] W. Mulder, S. Osher and J. Sethian, Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100 (1992) 209-228. | Zbl 0758.76044

[30] S. Müller and A. Voß, The Riemann problem for the Euler equations with nonconvex and nonsmooth equation of state: construction of wave curves. SIAM J. Sci. Comput. 28 (1992) 651-681. | Zbl 1114.35127

[31] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Appl. Math. Sci. 153. Springer (2003). | MR 1939127 | Zbl 1026.76001

[32] S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49. | Zbl 0659.65132

[33] S. Osher and C.-W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. | Zbl 0736.65066

[34] D. Peng, B. Merriman, S. Osher, H.K. Zhao and M. Kang, A PDE-based fast local level set method. J. Comput. Phys. 155 (1999) 410-438. | Zbl 0964.76069

[35] G. Russo and P. Smereka, A remark on computing distance functions. J. Comput. Phys. 163 (2000) 51-67. | Zbl 0964.65089

[36] D. Serre, Systems of Conservation Laws 1. Cambridge University Press (1999). | MR 1707279 | Zbl 0930.35001

[37] M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146-154. | Zbl 0808.76077

[38] E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA Isaac Newton Institute for Mathematical Sciences (2003).

[39] L. Truskinovsky, Kinks versus Shocks, in Shock induced transitions and phase structures in general media, Springer, New York (1993) 185-229. | Zbl 0818.76036

[40] L. Truskinovsky and A. Vainchtein, Explicit kinetic relation from “first principles”, in Mechanics of material forces 11, Advances in Mechanics and Mathematics, P. Steinmann and G.A. Maugin (Eds.), Springer (2005) 43-50.

[41] X. Zhong, T.Y. Hou and P.G. Lefloch, Computational method for propagating phase boundaries. J. Comput. Phys. 124 (1996) 192-216. | Zbl 0855.73080