This paper is concerned with the unilateral contact problem in linear elasticity. We define two a posteriori error estimators of residual type to evaluate the accuracy of the mixed finite element approximation of the contact problem. Upper and lower bounds of the discretization error are proved for both estimators and several computations are performed to illustrate the theoretical results.
@article{M2AN_2007__41_5_897_0, author = {Hild, Patrick and Nicaise, Serge}, title = {Residual a posteriori error estimators for contact problems in elasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {897-923}, doi = {10.1051/m2an:2007045}, mrnumber = {2363888}, zbl = {1140.74024}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_5_897_0} }
Hild, Patrick; Nicaise, Serge. Residual a posteriori error estimators for contact problems in elasticity. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 897-923. doi : 10.1051/m2an:2007045. http://gdmltest.u-ga.fr/item/M2AN_2007__41_5_897_0/
[1] Sobolev spaces. Academic Press (1975). | MR 450957 | Zbl 0314.46030
,[2] Theoretical numerical analysis: a functional analysis framework, in Texts in Applied Mathematics 39, Springer, New-York (2001); (second edition 2005). | MR 1817388 | Zbl 1068.47091
and ,[3] Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. SIAM J. Numer. Anal. 37 (2000) 1198-1216. | Zbl 0974.74055
,[4] Hybrid finite element methods for the Signorini problem. Math. Comp. 72 (2003) 1117-1145. | Zbl 1023.74043
and ,[5] A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. Appl. Numer. Math. 52 (2005) 13-38. | Zbl 1069.65067
, and ,[6] A posteriori error estimators for obstacle problems - another look. Numer. Math. 101 (2005) 415-421. | Zbl 1118.65068
,[7] Adaptive finite elements for elastic bodies in contact. SIAM J. Sci. Comput. 20 (1999) 1605-1626. | Zbl 0940.74058
, and ,[8] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | Zbl 0943.65075
and ,[9] The finite element method for elliptic problems, in Handbook of Numerical Analysis, Volume II, Part 1, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17-352. | Zbl 0875.65086
,[10] A posteriori error estimation for unilateral contact with matching and nonmatching meshes. Comput. Methods Appl. Mech. Engrg. 186 (2000) 65-83. | Zbl 0979.74066
, and ,[11] A posteriori error control of finite element approximations for Coulomb's frictional contact. SIAM J. Sci. Comput. 23 (2001) 976-999. | Zbl 1032.74050
, and ,[12] Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp. 71 (2002) 1-25. | Zbl 1013.74062
, , and ,[13] Les inéquations en mécanique et en physique. Dunod (1972). | MR 464857 | Zbl 0298.73001
and ,[14] A residual-based error estimator for BEM-discretizations of contact problems. Numer. Math. 95 (2003) 253-282. | Zbl 1031.74050
and ,[15] Problemi elastici con vincoli unilaterali il problema di Signorini con ambigue condizioni al contorno. Mem. Accad. Naz. Lincei. 8 (1964) 91-140. | Zbl 0146.21204
,[16] Existence theorems in elasticity, in Handbuch der Physik, Band VIa/2, Springer (1972) 347-389.
,[17] Lectures on numerical methods for nonlinear variational problems, in Lectures on Mathematics and Physics 65, Notes by M. G. Vijayasundaram and M. Adimurthi, Tata Institute of Fundamental Research, Bombay; Springer-Verlag, Berlin-New York (1980). | MR 597520 | Zbl 0456.65035
,[18] Quasistatic contact problems in viscoelasticity and viscoplasticity. American Mathematical Society (2002). | MR 1935666 | Zbl 1013.74001
and ,[19] Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Volume IV, Part 2, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1996) 313-485. | Zbl 0873.73079
, and ,[20] A priori error analysis of a sign preserving mixed finite element method for contact problems. Preprint 2006/33 of the Laboratoire de Mathématiques de Besançon, submitted.
,[21] A posteriori error estimations of residual type for Signorini's problem. Numer. Math. 101 (2005) 523-549. | Zbl 1084.65106
and ,[22] Convex analysis and minimization algorithms I. Springer (1993). | MR 1261420
and ,[23] An optimal error estimate for nonlinear contact problems. SIAM J. Numer. Anal. 43 (2005) 156-173. | Zbl 1083.74047
and ,[24] Contact problems in elasticity. SIAM (1988). | MR 961258 | Zbl 0685.73002
and ,[25] Computational contact and impact mechanics. Springer (2002). | MR 1902698 | Zbl 0996.74003
,[26] A posteriori error estimation of - finite element approximations of frictional contact problems. Comput. Methods Appl. Mech. Engrg. 113 (1994) 11-45. | Zbl 0847.73062
and ,[27] Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | Zbl 0992.65073
,[28] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley and Teubner (1996). | Zbl 0853.65108
,[29] A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Engrg. 176 (1999) 419-440. | Zbl 0935.74072
,[30] Computational Contact Mechanics. Wiley (2002).
,[31] Different a posteriori error estimators and indicators for contact problems. Mathl. Comput. Modelling 28 (1998) 437-447. | Zbl 1122.74527
and ,