Homogenization of thin piezoelectric perforated shells
Ghergu, Marius ; Griso, Georges ; Mechkour, Houari ; Miara, Bernadette
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007), p. 875-895 / Harvested from Numdam

We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined with the Korn's inequality in perforated domains, we obtain the limit model.

Publié le : 2007-01-01
DOI : https://doi.org/10.1051/m2an:2007046
Classification:  74K25,  74Q05,  35B27
@article{M2AN_2007__41_5_875_0,
     author = {Ghergu, Marius and Griso, Georges and Mechkour, Houari and Miara, Bernadette},
     title = {Homogenization of thin piezoelectric perforated shells},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {41},
     year = {2007},
     pages = {875-895},
     doi = {10.1051/m2an:2007046},
     mrnumber = {2363887},
     zbl = {1138.74039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2007__41_5_875_0}
}
Ghergu, Marius; Griso, Georges; Mechkour, Houari; Miara, Bernadette. Homogenization of thin piezoelectric perforated shells. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 875-895. doi : 10.1051/m2an:2007046. http://gdmltest.u-ga.fr/item/M2AN_2007__41_5_875_0/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl 0770.35005

[2] T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow in homogenization theory. SIAM J. Math. Anal. 21 (1990) 823-836. | Zbl 0698.76106

[3] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic methods in periodic media. North Holland (1978). | MR 503330

[4] A. Bourgeat, J.B. Castillero, J.A. Otero and R.R. Ramos, Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Structures 35 (1998) 527-541. | Zbl 0930.74045

[5] D. Caillerie and E. Sanchez-Palencia, A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci. 5 (1995) 47-66. | Zbl 0830.73039

[6] D. Caillerie and E. Sanchez-Palencia, Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci. 5 (1995) 473-496. | Zbl 0844.73043

[7] A. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Acad. Sci. Paris, Sér. I 335 (2002) 99-104. | Zbl 1001.49016

[8] D. Cioranescu and P. Donato, An introduction to homogenization. Oxford University Press (1999). | MR 1765047 | Zbl 0939.35001

[9] D. Cioranescu and P. Donato, The periodic unfolding method in perforated domains,Portugaliae Mathematica, Vol. 63, Fasc. 4 (2006) 467-496. | Zbl 1119.49014

[10] D. Cioranescu and J. Saint-Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, New-York (1999). | MR 1676922 | Zbl 0929.35002

[11] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Porth. Math. N.S. 63 (2006) 467-496. | Zbl 1119.49014

[12] E. Dieulesaint and D. Royer, Ondes élastiques dans les solides, application au traitement du signal. Masson, Paris (1974).

[13] C. Haenel, Analyse et simulation numérique de coques piézoélectriques. Ph.D. thesis, Université Pierre et Marie Curie, France (2000).

[14] T. Ikeda, Fundamentals of piezoelectricity. Oxford University Press (1990).

[15] W.T. Koiter, On the foundations of the linear theory of thin elastic shell. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169-195. | Zbl 0213.27002

[16] T. Lewiński and J.J. Telega, Plates, laminates and shells. Asymptotic analysis and homogenization, Advances in Mathematics for Applied Sciences. World Scientific (2000). | MR 1758600 | Zbl 0965.74003

[17] S. Luckhaus, A. Bourgeat and A. Mikelic, Convergence of the homogenization process for a double porosity model of immiscible two phase flow. SIAM J. Math. Anal. 27 (1996) 1520-1543. | Zbl 0866.35018

[18] H. Mechkour, Homogénéisation et simulation numérique de structures piézoeléctriques perforées et laminées. Ph.D. thesis, ESIEE-Paris (2004).

[19] B. Miara, E. Rohan, M. Zidi and B. Labat, Piezomaterials for bone regeneration design. Homogenization approach. J. Mech. Phys. Solids 53 (2005) 2529-2556.

[20] G. Nguetseng, A general convergence result for a functional related to the theory of homogenisation. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl 0688.35007

[21] A. Preumont, A. François and P. De Man, Spatial filtering with piezoelectric films via porous electrod design, in Proc. of 13th Int. Conf. on Adaptive Structures and Technologies, Berlin (2002).

[22] J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Application à la Mécanique des milieux continus. Masson, Paris (1992).

[23] J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques. Masson, Paris (1997). | Zbl 0881.73001