We present families of scalar nonconforming finite elements of arbitrary order with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order form inf-sup stable finite element pairs of order for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case . A numerical comparison between conforming and nonconforming discretisations will be given. Since higher order nonconforming discretisation on quadrilaterals and hexahedra have less unknowns and much less non-zero matrix entries compared to corresponding conforming methods, these methods are attractive for numerical simulations.
@article{M2AN_2007__41_5_855_0, author = {Matthies, Gunar}, title = {Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {855-874}, doi = {10.1051/m2an:2007034}, mrnumber = {2363886}, zbl = {pre05289352}, zbl = {1147.65094}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_5_855_0} }
Matthies, Gunar. Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 855-874. doi : 10.1051/m2an:2007034. http://gdmltest.u-ga.fr/item/M2AN_2007__41_5_855_0/
[1] Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. | Zbl 0423.65058
and ,[2] An efficient smoother for the Stokes problem. Appl. Numer. Math. 23 (1997) 3-19. | Zbl 0874.65095
and ,[3] Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112-124. | Zbl 0201.07803
and ,[4] A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215-232. | Zbl 0947.76047
, and ,[5] Nonconforming quadrilateral finite elements: a correction. Calcolo 37 (2000) 253-254. | Zbl 1012.65124
, , , and ,[6] Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO. Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl 0302.65087
and ,[7] Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747-770. | Numdam | Zbl 0941.65115
, , and ,[8] An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341-354. | Numdam | Zbl 0373.65055
,[9] Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986). | MR 851383 | Zbl 0585.65077
and ,[10] Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223-233. | Zbl 0573.65083
,[11] A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701-738. | Zbl 0677.65101
, and ,[12] Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering 34, Springer-Verlag, Berlin, Heidelberg, New York (2003). | MR 2018955 | Zbl 1035.76001
,[13] Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37 (2001) 885-903. | Zbl 1007.76040
and ,[14] MooNMD-a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163-169. | Zbl 1061.65124
and ,[15] Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68 (2002) 313-341. | Zbl 1006.65137
, , and ,[16] The inf-sup condition for the mapped element in arbitrary space dimensions. Computing 69 (2002) 119-139. | Zbl 1016.65073
and ,[17] Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102 (2005) 293-309. | Zbl 1089.65123
and ,[18] Nonconforming finite elements of arbitrary degree over triangles. RANA report 0328, Technical University of Eindhoven (2003).
and ,[19] Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8 (1992) 97-111. | Zbl 0742.76051
and ,[20] A general transfer operator for arbitrary finite element spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2000).
,[21] Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Engrg. 59 (1986) 29-48. | Zbl 0604.76025
,[22] Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. | Numdam | Zbl 0557.76037
,