The aim of this article is to propose a new method for the grey-level image classification problem. We first present the classical variational approach without and with a regularization term in order to smooth the contours of the classified image. Then we present the general topological asymptotic analysis, and we finally introduce its application to the grey-level image classification problem.
@article{M2AN_2007__41_3_607_0, author = {Auroux, Didier and Belaid, Lamia Jaafar and Masmoudi, Mohamed}, title = {A topological asymptotic analysis for the regularized grey-level image classification problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {607-625}, doi = {10.1051/m2an:2007027}, mrnumber = {2355713}, zbl = {1138.68622}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_3_607_0} }
Auroux, Didier; Belaid, Lamia Jaafar; Masmoudi, Mohamed. A topological asymptotic analysis for the regularized grey-level image classification problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 607-625. doi : 10.1051/m2an:2007027. http://gdmltest.u-ga.fr/item/M2AN_2007__41_3_607_0/
[1] Shape optimization by the homogenization method. Applied Mathematical Sciences 146, Springer (2002). | MR 1859696 | Zbl 0990.35001
,[2] Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids 12 (1993) 839-878. | Zbl 0794.73044
and ,[3] A level-set method for shape optimization. C. R. Acad. Sci. Sér. I 334 (2002) 1125-1130. | Zbl 1115.49306
, and ,[4] Structural optimization using topological and shape sensitivity via a level set method 34 (2005) 59-80. | MR 2211063
, , and ,[5] Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II - The full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769-814. | Zbl 1042.78002
, and ,[6] Crack detection by the topological gradient method. Control Cybern. 34 (2005) 119-138. | MR 2211064
, and ,[7] Optimal partitions, regularized solutions, and application to image classification. Appl. Anal. 84 (2005) 15-35. | Zbl pre02143844
and ,[8] Mathematical problems in image processing. Applied Mathematical Sciences 147, Springer-Verlag, New York (2002). | MR 1865346 | Zbl 1109.35002
and ,[9] Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process. 12 (2003) 1634-1641.
, and ,[10] Optimal topology design of continuum structure: an introduction. Technical report, Department of Mathematics, Technical University of Denmark, Lyngby, Denmark (1996).
,[11] Bayesian image classification using Markov random fields. Image Vision Comput. 14 (1996) 285-293.
, , and ,[12] A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3 (1994) 162-177.
and ,[13] Finite Element Method for Elliptic Problems. North Holland (2002). | MR 1930132 | Zbl 0383.65058
,[14] Surface reconstruction using active contour models. SPIE Int. Symp. Optics, Imaging and Instrumentation, San Diego California USA (July 1993).
, and ,[15] Analyse mathématique et calcul numérique pour les sciences et les techniques. Collection CEA, Masson, Paris (1987). | MR 918560 | Zbl 0642.35001
and ,[16] Some improvements to Bayesian image segmentation - Part one: modelling. Traitement du signal 14 (1997) 373-382. | Zbl 0991.68708
, and ,[17] Some improvements to Bayesian image segmentation - Part two: classification. Traitement du signal 14 (1997) 383-395. | Zbl 0991.68709
, and ,[18] Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependance. Arch. Rational Mech. Anal. 105 (1989) 299-326. | Zbl 0684.35087
and ,[19] The topological asymptotic for PDE systems: The elasticity case. SIAM J. Control Optim. 39 (1991) 17-49. | Zbl 0990.49028
, and ,[20] Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris. Ser. I Math. 342 (2006) 313-318. | Zbl 1086.68141
, , and ,[21] Modélisations markoviennes multirésolutions en vision par ordinateur - Application à la segmentation d'images SPOT. Ph.D. thesis, INRIA, Sophia Antipolis, France (1994).
,[22] The topological asymptotic, in Computational Methods for Control Applications, R. Glowinski, H. Karawada and J. Periaux Eds., GAKUTO Internat. Ser. Math. Sci. Appl. 16, Tokyo, Japan (2001) 53-72. | Zbl 1082.93584
,[23] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | Zbl 0691.49036
and ,[24] Geodesic active regions and level set methods for supervised texture segmentation. Int. Jour. Computer Vision 46 (2002) 223-247. | Zbl 1012.68726
and ,[25] Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 225-233.
and ,[26] Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 629-638.
and ,[27] The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42 (2003) 1523-1544. | Zbl 1051.49029
, and ,[28] A level set method for image classification. Int. J. Comput. Vision 40 (2000) 187-197. | Zbl 1012.68706
, , and ,[29] A variational model for image classification and restauration. IEEE Trans. Pattern Anal. Machine Intelligence 22 (2000) 460-472.
, , and ,[30] Level set methods evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambride University Press (1996). | MR 1409367 | Zbl 0859.76004
,[31] Topological derivatives of shape functionals for elasticity systems. Int. Ser. Numer. Math. 139 (2002) 231-244. | Zbl 1024.49030
and ,[32] Variational methods in image segmentation. Birkhauser (1995). | MR 1321598
and ,[33] Reduced Non-Convex Functional Approximations for Image Restoration and Segmentation. UCLA CAM Report 97-56 (1997).
and ,[34] A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192 (2003) 227-246. | Zbl 1083.74573
, and ,[35] Efficient image segmentation using partial differential equations and morphology. Pattern Recogn. 34 (2001) 1813-1824. | Zbl 1003.68712
,