Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for the error in . The error estimator is localized in the sense that the size of the elliptic residual is only relevant in the approximate non-contact region, and the approximability of the obstacle is only relevant in the approximate contact region. We also obtain lower bound results for the space error indicators in the non-contact region, and for the time error estimator. Numerical results for show that the error estimator decays with the same rate as the actual error when the space meshsize and the time step tend to zero. Also, the error indicators capture the correct behavior of the errors in both the contact and the non-contact regions.
@article{M2AN_2007__41_3_485_0, author = {Moon, Kyoung-Sook and Nochetto, Ricardo H. and Petersdorff, Tobias Von and Zhang, Chen-Song}, title = {A posteriori error analysis for parabolic variational inequalities}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {485-511}, doi = {10.1051/m2an:2007029}, mrnumber = {2355709}, zbl = {pre05289382}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_3_485_0} }
Moon, Kyoung-Sook; Nochetto, Ricardo H.; Petersdorff, Tobias Von; Zhang, Chen-Song. A posteriori error analysis for parabolic variational inequalities. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 485-511. doi : 10.1051/m2an:2007029. http://gdmltest.u-ga.fr/item/M2AN_2007__41_3_485_0/
[1] Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003). | MR 1960405 | Zbl 1020.65058
and ,[2] A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117-1138 (electronic). | Zbl 1072.65124
, and ,[3] The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | Zbl 1092.91524
and ,[4] Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973). | MR 348562 | Zbl 0252.47055
,[5] Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18 (1975) 115-147. | Zbl 0318.45011
and ,[6] Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43-66. | Zbl 0898.90029
and ,[7] The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997) 563-591. | Zbl 0901.46034
,[8] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | Zbl 0943.65075
and ,[9] Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109-131. | Zbl 0454.65050
,[10] -error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987) 57-565. | Zbl 0617.65064
,[11] A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032-2055. | Zbl 1058.65066
and ,[12] Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984). | MR 737005 | Zbl 0536.65054
,[13] Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263-289. | Zbl 0714.90004
, and ,[14] Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal. 13 (1976) 599-606. | Zbl 0337.65055
,[15] Introduction to stochastic calculus applied to finance. Springer (1996). | MR 1422250 | Zbl 0949.60005
and ,[16] Adaptive mesh refinement for evolution obstacle problems (in preparation).
and ,[17] Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I 326 (1998) 1437-1442. | Zbl 0944.65077
, and ,[18] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525-589. | Zbl 1021.65047
, and ,[19] Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163-195. | Zbl 1027.65089
, and ,[20] Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42 (2005) 2118-2135. | Zbl 1095.65099
, and ,[21] Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl 0935.65105
,[22] Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005). | MR 2127659 | Zbl 1068.65138
and ,[23] Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146-167. | Zbl 0992.65073
,[24] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996). | Zbl 0853.65108
,[25] A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | Zbl pre02216993
,[26] Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93-127. | Numdam | Zbl 1083.65095
and ,[27] An -error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990) 453-471. | Zbl 0696.65069
,[28] Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993). | Zbl 0844.90011
, , and ,