We explain why the conventional argument for deriving the time-dependent Born-Oppenheimer approximation is incomplete and review recent mathematical results, which clarify the situation and at the same time provide a systematic scheme for higher order corrections. We also present a new elementary derivation of the correct second-order time-dependent Born-Oppenheimer approximation and discuss as applications the dynamics near a conical intersection of potential surfaces and reactive scattering.
@article{M2AN_2007__41_2_297_0, author = {Panati, Gianluca and Spohn, Herbert and Teufel, Stefan}, title = {The time-dependent Born-Oppenheimer approximation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {41}, year = {2007}, pages = {297-314}, doi = {10.1051/m2an:2007023}, mrnumber = {2339630}, zbl = {1135.81338}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2007__41_2_297_0} }
Panati, Gianluca; Spohn, Herbert; Teufel, Stefan. The time-dependent Born-Oppenheimer approximation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 297-314. doi : 10.1051/m2an:2007023. http://gdmltest.u-ga.fr/item/M2AN_2007__41_2_297_0/
[1] Measurement of relative state-to-state rate constants for the reaction . J. Chem. Phys. 97 (1992) 7323-7341.
, , and ,[2] The Born-Oppenheimer electric gauge force is repulsive near degeneracies. J. Phys. A 23 (1990) L655-L657.
and ,[3] The geometric phase in quantum systems. Texts and Monographs in Physics, Springer, Heidelberg (2003). | MR 1996062 | Zbl 1039.81003
, , , and ,[4] Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzig) 84 (1927) 457-484. | JFM 53.0845.04
and ,[5] Scattering amplitude for Dirac operators. Comm. Partial Differential Equations 24 (1999) 377-394. | Zbl 0924.35127
and ,[6] The microlocal Landau-Zener formula. Ann. Inst. H. Poincaré Phys. Theor. 71 (1999) 95-127. | Numdam | MR 1704655 | Zbl 0986.81027
, and ,[7] The Born-Oppenheimer approximation, in Rigorous Atomic and Molecular Physics, G. Velo, A. Wightman Eds., New York, Plenum (1981) 185-212.
, and ,[8] Geometry of the transport equation in multicomponent WKB approximations. Commun. Math. Phys. 176 (1996) 701-711. | Zbl 0848.34039
and ,[9] Mesures semi-classiques et croisement de modes. Bull. Soc. Math. France 130 (2002) 123-168. | Numdam | Zbl 0996.35004
and ,[10] Wigner measures and codimension 2 crossings. J. Math. Phys. 44 (2003) 507-527. | Zbl 1061.81078
and ,[11] A time dependent Born-Oppenheimer approximation. Commun. Math. Phys. 77 (1980) 1-19. | Zbl 0448.70013
,[12] High order corrections to the time-dependent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Math. 124 (1986) 571-590. | Zbl 0619.35094
,[13] High order corrections to the time-independent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Inst. H. Poincaré Sect. A 47 (1987) 1-19. | Zbl 0448.70013
,[14] High order corrections to the time-dependent Born-Oppenheimer approximation. II. Coulomb systems. Comm. Math. Phys. 117 (1988) 387-403.
,[15] Molecular propagation through electron energy level crossings, Memoirs of the American Mathematical Society 111 (1994). | MR 1234882 | Zbl 0833.92025
,[16] A time-dependent Born-Oppenheimer approximation with exponentially small error estimates. Commun. Math. Phys. 223 (2001) 583-626. | Zbl pre01731916
and ,[17] On the adiabatic theorem of quantum mechanics. Phys. Soc. Jap. 5 (1950) 435-439.
,[18] On the Born-Oppenheimer expansion for polyatomic molecules. Commun. Math. Phys. 143 (1992) 607-639. | Zbl 0754.35099
, , and ,[19] Propagation through conical crossings: an asymptotic transport equation and numerical experiments, Commun. Pure Appl. Math. 58 (2005) 1188-1230. | Zbl pre02207891
and ,[20] Geometric phases in the asymptotic theory of coupled wave equations. Phys. Rev. A 44 (1991) 5239-5255.
and ,[21] A general reduction scheme for the time-dependent Born-Oppenheimer approximation. C. R. Acad. Sci. Paris, Sér. I 334 (2002) 185-188. | Zbl 1079.81524
and ,[22] On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70 (1979) 2284-2296.
and ,[23] Semiclassical limit for multistate Klein-Gordon systems: almost invariant subspaces and scattering theory. J. Math. Phys. 45 (2004) 3676-3696. | Zbl 1071.81043
and ,[24] Z. Phys. 30 (1929) 467.
and .[25] Space-adiabatic perturbation theory in quantum dynamics. Phys. Rev. Lett. 88 (2002) 250405. | MR 2014961
, and ,[26] Space-adiabatic perturbation theory. Adv. Theor. Math. Phys. 7 (2003) 145-204.
, and ,[27] Projecteurs adiabatiques du point de vue pseudodifferéntiel. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 217-220. | Zbl 0783.35087
,[28] Reduction scheme for semiclassical operator-valued Schrödinger type equation and application to scattering. Comm. Partial Differential Equations 28 (2003) 1221-1236. | Zbl pre01971928
,[29] Adiabatic decoupling and time-dependent Born-Oppenheimer theory. Commun. Math. Phys. 224 (2001) 113-132. | Zbl 1017.81014
and ,[30] Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics 1821. Springer (2003). | MR 2158392 | Zbl 1053.81003
,[31] Diagonalization of multicomponent wave equations with a Born-Oppenheimer example. Phys. Rev. A 47 (1993) 3506-3512.
and ,[32] Prediction of the effect of the geometric phase on product rotational state distributions and integral cross sections. Chem. Phys. Lett. 201 (1993) 178-186.
and ,[33] Magnetic screening of nuclei by electrons as an effect of geometric vector potential. J. Chem. Phys. 100 (1994) 8125-8131.
and ,