Diffusion Monte Carlo method : numerical analysis in a simple case
Makrini, Mohamed El ; Jourdain, Benjamin ; Lelièvre, Tony
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007), p. 189-213 / Harvested from Numdam

The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a stochastic differential equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove the convergence of the method for a fixed number of reconfigurations when the number of walkers tends to + while the timestep tends to 0. We confirm our theoretical rates of convergence by numerical experiments. Various resampling algorithms are investigated, both theoretically and numerically.

Publié le : 2007-01-01
DOI : https://doi.org/10.1051/m2an:2007017
Classification:  81Q05,  65C35,  60K35,  35P15
@article{M2AN_2007__41_2_189_0,
     author = {Makrini, Mohamed El and Jourdain, Benjamin and Leli\`evre, Tony},
     title = {Diffusion Monte Carlo method : numerical analysis in a simple case},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {41},
     year = {2007},
     pages = {189-213},
     doi = {10.1051/m2an:2007017},
     mrnumber = {2339625},
     zbl = {1135.81379},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2007__41_2_189_0}
}
Makrini, Mohamed El; Jourdain, Benjamin; Lelièvre, Tony. Diffusion Monte Carlo method : numerical analysis in a simple case. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 41 (2007) pp. 189-213. doi : 10.1051/m2an:2007017. http://gdmltest.u-ga.fr/item/M2AN_2007__41_2_189_0/

[1] A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | Zbl 1100.65007

[2] R. Assaraf, M. Caffarel and A. Khelif, Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566-4575.

[3] E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: a Primer, in Handbook of Numerical Analysis, Special volume, Computational Chemistry, volume X, Ph.G. Ciarlet and C. Le Bris Eds., North-Holland (2003) 3-270. | Zbl 1070.81534

[4] E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Methods Appl. Sci. 16 (2006) 1403-1440. | Zbl 1098.81095

[5] O. Cappé, R. Douc and E. Moulines, Comparison of Resampling Schemes for Particle Filtering, in 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia (2005).

[6] N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385-2411. | Zbl 1079.65006

[7] P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). | MR 2044973 | Zbl 1130.60003

[8] P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stochastic Anal. Appl. 22 (2004) 1175-1207. | Zbl 1071.60100

[9] P. Del Moral and L. Miclo, Branching and Interacting Particle Systems. Approximation of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics 1729, Springer-Verlag (2000) 1-145. | Numdam | Zbl 0963.60040

[10] P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171-208. | Numdam | Zbl 1040.81009

[11] P. Glasserman, Monte Carlo methods in financial engineering. Springer-Verlag (2004). | MR 1999614 | Zbl 1038.91045

[12] J.H. Hetherington, Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713-2719.

[13] P.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester, Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77 (1982) 5593-5603.

[14] M. Rousset, On the control of an interacting particle approximation of Schrödinger groundstates. SIAM J. Math. Anal. 38 (2006) 824-844. | Zbl pre05155707

[15] S. Sorella, Green Function Monte Carlo with Stochastic Reconfiguration. Phys. Rev. Lett. 80 (1998) 4558-4561.

[16] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 94-120. | Zbl 0718.60058

[17] C.J. Umrigar, M.P. Nightingale and K.J. Runge, A Diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99 (1993) 2865-2890.